Barred Preferential Arrangements

A preferential arrangement of a set is a total ordering of the elements of that set with ties allowed. A barred preferential arrangement is one in which the tied blocks of elements are ordered not only amongst themselves but also with respect to one or more bars. We present various combinatorial ide...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Electronic journal of combinatorics 2013-06, Vol.20 (2)
Hauptverfasser: Ahlbach, Connor, Usatine, Jeremy, Pippenger, Nicholas
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title The Electronic journal of combinatorics
container_volume 20
creator Ahlbach, Connor
Usatine, Jeremy
Pippenger, Nicholas
description A preferential arrangement of a set is a total ordering of the elements of that set with ties allowed. A barred preferential arrangement is one in which the tied blocks of elements are ordered not only amongst themselves but also with respect to one or more bars. We present various combinatorial identities for $r_{m,\ell}$, the number of barred preferential arrangements of $\ell$ elements with $m$ bars, using both algebraic and combinatorial arguments. Our main result is an expression for $r_{m,\ell}$ as a linear combination of the $r_k$ ($= r_{0,k}$, the number of unbarred preferential arrangements of $k$ elements) for  $\ell\le k\le\ell+m$. We also enumerate those arrangements in which the sections, into which the blocks are segregated by the bars, must be nonempty. We conclude with an expression of $r_\ell$ as an infinite series that is both convergent and asymptotic.
doi_str_mv 10.37236/2482
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_37236_2482</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_37236_2482</sourcerecordid><originalsourceid>FETCH-LOGICAL-c252t-c187d8d7c71194ba5056ce12a08aa9accb33434c6ddddd4825fd36c976c7fbbf3</originalsourceid><addsrcrecordid>eNpNj7tuwkAURFcoSBDgH9ykNNmH91UCIgEJiRShtq7v7iJHhkR3afh7DEmRaWamGZ1hbCb4XFmpzKusnBywseDWls5L8_Qvj9hzzl-cC-m9HrNiCUQxFB8UU6R4vrTQFQsiOB_jqa95yoYJuhxnfz5hh7f152pT7vbv29ViV6LU8lKicDa4YNEK4asGNNcGo5DAHYAHxEapSlVowl09n05BGfTWoE1Nk9SEvfzuIn3n3NPUP9SegK614PXjVn2_pW41GT5k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Barred Preferential Arrangements</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Ahlbach, Connor ; Usatine, Jeremy ; Pippenger, Nicholas</creator><creatorcontrib>Ahlbach, Connor ; Usatine, Jeremy ; Pippenger, Nicholas</creatorcontrib><description>A preferential arrangement of a set is a total ordering of the elements of that set with ties allowed. A barred preferential arrangement is one in which the tied blocks of elements are ordered not only amongst themselves but also with respect to one or more bars. We present various combinatorial identities for $r_{m,\ell}$, the number of barred preferential arrangements of $\ell$ elements with $m$ bars, using both algebraic and combinatorial arguments. Our main result is an expression for $r_{m,\ell}$ as a linear combination of the $r_k$ ($= r_{0,k}$, the number of unbarred preferential arrangements of $k$ elements) for  $\ell\le k\le\ell+m$. We also enumerate those arrangements in which the sections, into which the blocks are segregated by the bars, must be nonempty. We conclude with an expression of $r_\ell$ as an infinite series that is both convergent and asymptotic.</description><identifier>ISSN: 1077-8926</identifier><identifier>EISSN: 1077-8926</identifier><identifier>DOI: 10.37236/2482</identifier><language>eng</language><ispartof>The Electronic journal of combinatorics, 2013-06, Vol.20 (2)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c252t-c187d8d7c71194ba5056ce12a08aa9accb33434c6ddddd4825fd36c976c7fbbf3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ahlbach, Connor</creatorcontrib><creatorcontrib>Usatine, Jeremy</creatorcontrib><creatorcontrib>Pippenger, Nicholas</creatorcontrib><title>Barred Preferential Arrangements</title><title>The Electronic journal of combinatorics</title><description>A preferential arrangement of a set is a total ordering of the elements of that set with ties allowed. A barred preferential arrangement is one in which the tied blocks of elements are ordered not only amongst themselves but also with respect to one or more bars. We present various combinatorial identities for $r_{m,\ell}$, the number of barred preferential arrangements of $\ell$ elements with $m$ bars, using both algebraic and combinatorial arguments. Our main result is an expression for $r_{m,\ell}$ as a linear combination of the $r_k$ ($= r_{0,k}$, the number of unbarred preferential arrangements of $k$ elements) for  $\ell\le k\le\ell+m$. We also enumerate those arrangements in which the sections, into which the blocks are segregated by the bars, must be nonempty. We conclude with an expression of $r_\ell$ as an infinite series that is both convergent and asymptotic.</description><issn>1077-8926</issn><issn>1077-8926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpNj7tuwkAURFcoSBDgH9ykNNmH91UCIgEJiRShtq7v7iJHhkR3afh7DEmRaWamGZ1hbCb4XFmpzKusnBywseDWls5L8_Qvj9hzzl-cC-m9HrNiCUQxFB8UU6R4vrTQFQsiOB_jqa95yoYJuhxnfz5hh7f152pT7vbv29ViV6LU8lKicDa4YNEK4asGNNcGo5DAHYAHxEapSlVowl09n05BGfTWoE1Nk9SEvfzuIn3n3NPUP9SegK614PXjVn2_pW41GT5k</recordid><startdate>20130613</startdate><enddate>20130613</enddate><creator>Ahlbach, Connor</creator><creator>Usatine, Jeremy</creator><creator>Pippenger, Nicholas</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130613</creationdate><title>Barred Preferential Arrangements</title><author>Ahlbach, Connor ; Usatine, Jeremy ; Pippenger, Nicholas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c252t-c187d8d7c71194ba5056ce12a08aa9accb33434c6ddddd4825fd36c976c7fbbf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahlbach, Connor</creatorcontrib><creatorcontrib>Usatine, Jeremy</creatorcontrib><creatorcontrib>Pippenger, Nicholas</creatorcontrib><collection>CrossRef</collection><jtitle>The Electronic journal of combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahlbach, Connor</au><au>Usatine, Jeremy</au><au>Pippenger, Nicholas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Barred Preferential Arrangements</atitle><jtitle>The Electronic journal of combinatorics</jtitle><date>2013-06-13</date><risdate>2013</risdate><volume>20</volume><issue>2</issue><issn>1077-8926</issn><eissn>1077-8926</eissn><abstract>A preferential arrangement of a set is a total ordering of the elements of that set with ties allowed. A barred preferential arrangement is one in which the tied blocks of elements are ordered not only amongst themselves but also with respect to one or more bars. We present various combinatorial identities for $r_{m,\ell}$, the number of barred preferential arrangements of $\ell$ elements with $m$ bars, using both algebraic and combinatorial arguments. Our main result is an expression for $r_{m,\ell}$ as a linear combination of the $r_k$ ($= r_{0,k}$, the number of unbarred preferential arrangements of $k$ elements) for  $\ell\le k\le\ell+m$. We also enumerate those arrangements in which the sections, into which the blocks are segregated by the bars, must be nonempty. We conclude with an expression of $r_\ell$ as an infinite series that is both convergent and asymptotic.</abstract><doi>10.37236/2482</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1077-8926
ispartof The Electronic journal of combinatorics, 2013-06, Vol.20 (2)
issn 1077-8926
1077-8926
language eng
recordid cdi_crossref_primary_10_37236_2482
source EZB-FREE-00999 freely available EZB journals
title Barred Preferential Arrangements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T22%3A19%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Barred%20Preferential%20Arrangements&rft.jtitle=The%20Electronic%20journal%20of%20combinatorics&rft.au=Ahlbach,%20Connor&rft.date=2013-06-13&rft.volume=20&rft.issue=2&rft.issn=1077-8926&rft.eissn=1077-8926&rft_id=info:doi/10.37236/2482&rft_dat=%3Ccrossref%3E10_37236_2482%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true