Bivariate Identities for Values of the Hurwitz Zeta Function and Supercongruences

In this paper, we prove a new identity for values of the Hurwitz zeta function which contains as particular cases Koecher's identity for odd zeta values, the Bailey-Borwein-Bradley identity for even zeta values and many other interesting formulas related to values of the Hurwitz zeta function....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Electronic journal of combinatorics 2012-02, Vol.18 (2)
Hauptverfasser: Pilehrood, Kh. Hessami, Pilehrood, T. Hessami
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title The Electronic journal of combinatorics
container_volume 18
creator Pilehrood, Kh. Hessami
Pilehrood, T. Hessami
description In this paper, we prove a new identity for values of the Hurwitz zeta function which contains as particular cases Koecher's identity for odd zeta values, the Bailey-Borwein-Bradley identity for even zeta values and many other interesting formulas related to values of the Hurwitz zeta function. We also get an extension of the bivariate identity of Cohen to values of the Hurwitz zeta function. The main tool we use here is a construction of new Markov-WZ pairs. As application of our results, we prove several conjectures on supercongruences proposed by J. Guillera, W. Zudilin, and Z. W. Sun.
doi_str_mv 10.37236/2049
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_37236_2049</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_37236_2049</sourcerecordid><originalsourceid>FETCH-LOGICAL-c669-42d663449c776a9cfc30683bf00e377e23f294f6af0dc6e3759a47714febb1cc3</originalsourceid><addsrcrecordid>eNpNkM1KAzEYRYMoWGvfIRuXo_lr0iy1WFsoiFhcuBky33zRSE1KklH06a0_C1f3cBdncQiZcHYujZD6QjBlD8iIM2OamRX68B8fk5NSXhjjwtrpiNxdhTeXg6tIVz3GGmrAQn3K9MFthz0mT-sz0uWQ30P9pI9YHV0MEWpIkbrY0_thhxlSfMoDRsBySo682xac_O2YbBbXm_myWd_erOaX6wa0to0SvdZSKQvGaGfBg2R6JjvPGEpjUEgvrPLaedaD3l9T65QxXHnsOg4gx-TsVws5lZLRt7scXl3-aDlrfzK03xnkF71eT1s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bivariate Identities for Values of the Hurwitz Zeta Function and Supercongruences</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Pilehrood, Kh. Hessami ; Pilehrood, T. Hessami</creator><creatorcontrib>Pilehrood, Kh. Hessami ; Pilehrood, T. Hessami</creatorcontrib><description>In this paper, we prove a new identity for values of the Hurwitz zeta function which contains as particular cases Koecher's identity for odd zeta values, the Bailey-Borwein-Bradley identity for even zeta values and many other interesting formulas related to values of the Hurwitz zeta function. We also get an extension of the bivariate identity of Cohen to values of the Hurwitz zeta function. The main tool we use here is a construction of new Markov-WZ pairs. As application of our results, we prove several conjectures on supercongruences proposed by J. Guillera, W. Zudilin, and Z. W. Sun.</description><identifier>ISSN: 1077-8926</identifier><identifier>EISSN: 1077-8926</identifier><identifier>DOI: 10.37236/2049</identifier><language>eng</language><ispartof>The Electronic journal of combinatorics, 2012-02, Vol.18 (2)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c669-42d663449c776a9cfc30683bf00e377e23f294f6af0dc6e3759a47714febb1cc3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Pilehrood, Kh. Hessami</creatorcontrib><creatorcontrib>Pilehrood, T. Hessami</creatorcontrib><title>Bivariate Identities for Values of the Hurwitz Zeta Function and Supercongruences</title><title>The Electronic journal of combinatorics</title><description>In this paper, we prove a new identity for values of the Hurwitz zeta function which contains as particular cases Koecher's identity for odd zeta values, the Bailey-Borwein-Bradley identity for even zeta values and many other interesting formulas related to values of the Hurwitz zeta function. We also get an extension of the bivariate identity of Cohen to values of the Hurwitz zeta function. The main tool we use here is a construction of new Markov-WZ pairs. As application of our results, we prove several conjectures on supercongruences proposed by J. Guillera, W. Zudilin, and Z. W. Sun.</description><issn>1077-8926</issn><issn>1077-8926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpNkM1KAzEYRYMoWGvfIRuXo_lr0iy1WFsoiFhcuBky33zRSE1KklH06a0_C1f3cBdncQiZcHYujZD6QjBlD8iIM2OamRX68B8fk5NSXhjjwtrpiNxdhTeXg6tIVz3GGmrAQn3K9MFthz0mT-sz0uWQ30P9pI9YHV0MEWpIkbrY0_thhxlSfMoDRsBySo682xac_O2YbBbXm_myWd_erOaX6wa0to0SvdZSKQvGaGfBg2R6JjvPGEpjUEgvrPLaedaD3l9T65QxXHnsOg4gx-TsVws5lZLRt7scXl3-aDlrfzK03xnkF71eT1s</recordid><startdate>20120223</startdate><enddate>20120223</enddate><creator>Pilehrood, Kh. Hessami</creator><creator>Pilehrood, T. Hessami</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120223</creationdate><title>Bivariate Identities for Values of the Hurwitz Zeta Function and Supercongruences</title><author>Pilehrood, Kh. Hessami ; Pilehrood, T. Hessami</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c669-42d663449c776a9cfc30683bf00e377e23f294f6af0dc6e3759a47714febb1cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pilehrood, Kh. Hessami</creatorcontrib><creatorcontrib>Pilehrood, T. Hessami</creatorcontrib><collection>CrossRef</collection><jtitle>The Electronic journal of combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pilehrood, Kh. Hessami</au><au>Pilehrood, T. Hessami</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bivariate Identities for Values of the Hurwitz Zeta Function and Supercongruences</atitle><jtitle>The Electronic journal of combinatorics</jtitle><date>2012-02-23</date><risdate>2012</risdate><volume>18</volume><issue>2</issue><issn>1077-8926</issn><eissn>1077-8926</eissn><abstract>In this paper, we prove a new identity for values of the Hurwitz zeta function which contains as particular cases Koecher's identity for odd zeta values, the Bailey-Borwein-Bradley identity for even zeta values and many other interesting formulas related to values of the Hurwitz zeta function. We also get an extension of the bivariate identity of Cohen to values of the Hurwitz zeta function. The main tool we use here is a construction of new Markov-WZ pairs. As application of our results, we prove several conjectures on supercongruences proposed by J. Guillera, W. Zudilin, and Z. W. Sun.</abstract><doi>10.37236/2049</doi></addata></record>
fulltext fulltext
identifier ISSN: 1077-8926
ispartof The Electronic journal of combinatorics, 2012-02, Vol.18 (2)
issn 1077-8926
1077-8926
language eng
recordid cdi_crossref_primary_10_37236_2049
source EZB-FREE-00999 freely available EZB journals
title Bivariate Identities for Values of the Hurwitz Zeta Function and Supercongruences
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T11%3A56%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bivariate%20Identities%20for%20Values%20of%20the%20Hurwitz%20Zeta%20Function%20and%20Supercongruences&rft.jtitle=The%20Electronic%20journal%20of%20combinatorics&rft.au=Pilehrood,%20Kh.%20Hessami&rft.date=2012-02-23&rft.volume=18&rft.issue=2&rft.issn=1077-8926&rft.eissn=1077-8926&rft_id=info:doi/10.37236/2049&rft_dat=%3Ccrossref%3E10_37236_2049%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true