Bivariate Identities for Values of the Hurwitz Zeta Function and Supercongruences
In this paper, we prove a new identity for values of the Hurwitz zeta function which contains as particular cases Koecher's identity for odd zeta values, the Bailey-Borwein-Bradley identity for even zeta values and many other interesting formulas related to values of the Hurwitz zeta function....
Gespeichert in:
Veröffentlicht in: | The Electronic journal of combinatorics 2012-02, Vol.18 (2) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | The Electronic journal of combinatorics |
container_volume | 18 |
creator | Pilehrood, Kh. Hessami Pilehrood, T. Hessami |
description | In this paper, we prove a new identity for values of the Hurwitz zeta function which contains as particular cases Koecher's identity for odd zeta values, the Bailey-Borwein-Bradley identity for even zeta values and many other interesting formulas related to values of the Hurwitz zeta function. We also get an extension of the bivariate identity of Cohen to values of the Hurwitz zeta function. The main tool we use here is a construction of new Markov-WZ pairs. As application of our results, we prove several conjectures on supercongruences proposed by J. Guillera, W. Zudilin, and Z. W. Sun. |
doi_str_mv | 10.37236/2049 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_37236_2049</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_37236_2049</sourcerecordid><originalsourceid>FETCH-LOGICAL-c669-42d663449c776a9cfc30683bf00e377e23f294f6af0dc6e3759a47714febb1cc3</originalsourceid><addsrcrecordid>eNpNkM1KAzEYRYMoWGvfIRuXo_lr0iy1WFsoiFhcuBky33zRSE1KklH06a0_C1f3cBdncQiZcHYujZD6QjBlD8iIM2OamRX68B8fk5NSXhjjwtrpiNxdhTeXg6tIVz3GGmrAQn3K9MFthz0mT-sz0uWQ30P9pI9YHV0MEWpIkbrY0_thhxlSfMoDRsBySo682xac_O2YbBbXm_myWd_erOaX6wa0to0SvdZSKQvGaGfBg2R6JjvPGEpjUEgvrPLaedaD3l9T65QxXHnsOg4gx-TsVws5lZLRt7scXl3-aDlrfzK03xnkF71eT1s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bivariate Identities for Values of the Hurwitz Zeta Function and Supercongruences</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Pilehrood, Kh. Hessami ; Pilehrood, T. Hessami</creator><creatorcontrib>Pilehrood, Kh. Hessami ; Pilehrood, T. Hessami</creatorcontrib><description>In this paper, we prove a new identity for values of the Hurwitz zeta function which contains as particular cases Koecher's identity for odd zeta values, the Bailey-Borwein-Bradley identity for even zeta values and many other interesting formulas related to values of the Hurwitz zeta function. We also get an extension of the bivariate identity of Cohen to values of the Hurwitz zeta function. The main tool we use here is a construction of new Markov-WZ pairs. As application of our results, we prove several conjectures on supercongruences proposed by J. Guillera, W. Zudilin, and Z. W. Sun.</description><identifier>ISSN: 1077-8926</identifier><identifier>EISSN: 1077-8926</identifier><identifier>DOI: 10.37236/2049</identifier><language>eng</language><ispartof>The Electronic journal of combinatorics, 2012-02, Vol.18 (2)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c669-42d663449c776a9cfc30683bf00e377e23f294f6af0dc6e3759a47714febb1cc3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Pilehrood, Kh. Hessami</creatorcontrib><creatorcontrib>Pilehrood, T. Hessami</creatorcontrib><title>Bivariate Identities for Values of the Hurwitz Zeta Function and Supercongruences</title><title>The Electronic journal of combinatorics</title><description>In this paper, we prove a new identity for values of the Hurwitz zeta function which contains as particular cases Koecher's identity for odd zeta values, the Bailey-Borwein-Bradley identity for even zeta values and many other interesting formulas related to values of the Hurwitz zeta function. We also get an extension of the bivariate identity of Cohen to values of the Hurwitz zeta function. The main tool we use here is a construction of new Markov-WZ pairs. As application of our results, we prove several conjectures on supercongruences proposed by J. Guillera, W. Zudilin, and Z. W. Sun.</description><issn>1077-8926</issn><issn>1077-8926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpNkM1KAzEYRYMoWGvfIRuXo_lr0iy1WFsoiFhcuBky33zRSE1KklH06a0_C1f3cBdncQiZcHYujZD6QjBlD8iIM2OamRX68B8fk5NSXhjjwtrpiNxdhTeXg6tIVz3GGmrAQn3K9MFthz0mT-sz0uWQ30P9pI9YHV0MEWpIkbrY0_thhxlSfMoDRsBySo682xac_O2YbBbXm_myWd_erOaX6wa0to0SvdZSKQvGaGfBg2R6JjvPGEpjUEgvrPLaedaD3l9T65QxXHnsOg4gx-TsVws5lZLRt7scXl3-aDlrfzK03xnkF71eT1s</recordid><startdate>20120223</startdate><enddate>20120223</enddate><creator>Pilehrood, Kh. Hessami</creator><creator>Pilehrood, T. Hessami</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120223</creationdate><title>Bivariate Identities for Values of the Hurwitz Zeta Function and Supercongruences</title><author>Pilehrood, Kh. Hessami ; Pilehrood, T. Hessami</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c669-42d663449c776a9cfc30683bf00e377e23f294f6af0dc6e3759a47714febb1cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pilehrood, Kh. Hessami</creatorcontrib><creatorcontrib>Pilehrood, T. Hessami</creatorcontrib><collection>CrossRef</collection><jtitle>The Electronic journal of combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pilehrood, Kh. Hessami</au><au>Pilehrood, T. Hessami</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bivariate Identities for Values of the Hurwitz Zeta Function and Supercongruences</atitle><jtitle>The Electronic journal of combinatorics</jtitle><date>2012-02-23</date><risdate>2012</risdate><volume>18</volume><issue>2</issue><issn>1077-8926</issn><eissn>1077-8926</eissn><abstract>In this paper, we prove a new identity for values of the Hurwitz zeta function which contains as particular cases Koecher's identity for odd zeta values, the Bailey-Borwein-Bradley identity for even zeta values and many other interesting formulas related to values of the Hurwitz zeta function. We also get an extension of the bivariate identity of Cohen to values of the Hurwitz zeta function. The main tool we use here is a construction of new Markov-WZ pairs. As application of our results, we prove several conjectures on supercongruences proposed by J. Guillera, W. Zudilin, and Z. W. Sun.</abstract><doi>10.37236/2049</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1077-8926 |
ispartof | The Electronic journal of combinatorics, 2012-02, Vol.18 (2) |
issn | 1077-8926 1077-8926 |
language | eng |
recordid | cdi_crossref_primary_10_37236_2049 |
source | EZB-FREE-00999 freely available EZB journals |
title | Bivariate Identities for Values of the Hurwitz Zeta Function and Supercongruences |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T11%3A56%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bivariate%20Identities%20for%20Values%20of%20the%20Hurwitz%20Zeta%20Function%20and%20Supercongruences&rft.jtitle=The%20Electronic%20journal%20of%20combinatorics&rft.au=Pilehrood,%20Kh.%20Hessami&rft.date=2012-02-23&rft.volume=18&rft.issue=2&rft.issn=1077-8926&rft.eissn=1077-8926&rft_id=info:doi/10.37236/2049&rft_dat=%3Ccrossref%3E10_37236_2049%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |