Profile Classes and Partial Well-Order for Permutations

It is known that the set of permutations, under the pattern containment ordering, is not a partial well-order. Characterizing the partially well-ordered closed sets (equivalently: down sets or ideals) in this poset remains a wide-open problem. Given a $0/\pm1$ matrix $M$, we define a closed set of p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Electronic journal of combinatorics 2003-10, Vol.9 (2)
Hauptverfasser: Murphy, Maximillian M., Vatter, Vincent R.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title The Electronic journal of combinatorics
container_volume 9
creator Murphy, Maximillian M.
Vatter, Vincent R.
description It is known that the set of permutations, under the pattern containment ordering, is not a partial well-order. Characterizing the partially well-ordered closed sets (equivalently: down sets or ideals) in this poset remains a wide-open problem. Given a $0/\pm1$ matrix $M$, we define a closed set of permutations called the profile class of $M$. These sets are generalizations of sets considered by Atkinson, Murphy, and Ruškuc. We show that the profile class of $M$ is partially well-ordered if and only if a related graph is a forest. Related to the antichains we construct to prove one of the directions of this result, we construct exotic fundamental antichains, which lack the periodicity exhibited by all previously known fundamental antichains of permutations.
doi_str_mv 10.37236/1689
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_37236_1689</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_37236_1689</sourcerecordid><originalsourceid>FETCH-LOGICAL-c134t-6ac68ac32c39028ac06f86d7ec35065521c4f477d0458943e52025f20631ec253</originalsourceid><addsrcrecordid>eNpNj7tKBDEUQIMouK77D2ksoze5eZYy-FhY2CkUyyFkbmAkuyPJWPj3Pgurc6oDh7GNhGt0Cu2NtD6csJUE54QPyp7-83N20dorgFQhmBVzfZ3zVIh3JbZGjcfjyPtYlykW_kKliH0dqfI8V95TPbwvcZnmY7tkZzmWRps_rtnz_d1T9yh2-4dtd7sTSaJehI3J-phQJQygvgxs9nZ0lNCANUbJpLN2bgRtfNBIRoEyWYFFSUkZXLOr326qc2uV8vBWp0OsH4OE4ed2-L7FT6dgRIk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Profile Classes and Partial Well-Order for Permutations</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Murphy, Maximillian M. ; Vatter, Vincent R.</creator><creatorcontrib>Murphy, Maximillian M. ; Vatter, Vincent R.</creatorcontrib><description>It is known that the set of permutations, under the pattern containment ordering, is not a partial well-order. Characterizing the partially well-ordered closed sets (equivalently: down sets or ideals) in this poset remains a wide-open problem. Given a $0/\pm1$ matrix $M$, we define a closed set of permutations called the profile class of $M$. These sets are generalizations of sets considered by Atkinson, Murphy, and Ruškuc. We show that the profile class of $M$ is partially well-ordered if and only if a related graph is a forest. Related to the antichains we construct to prove one of the directions of this result, we construct exotic fundamental antichains, which lack the periodicity exhibited by all previously known fundamental antichains of permutations.</description><identifier>ISSN: 1077-8926</identifier><identifier>EISSN: 1077-8926</identifier><identifier>DOI: 10.37236/1689</identifier><language>eng</language><ispartof>The Electronic journal of combinatorics, 2003-10, Vol.9 (2)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c134t-6ac68ac32c39028ac06f86d7ec35065521c4f477d0458943e52025f20631ec253</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Murphy, Maximillian M.</creatorcontrib><creatorcontrib>Vatter, Vincent R.</creatorcontrib><title>Profile Classes and Partial Well-Order for Permutations</title><title>The Electronic journal of combinatorics</title><description>It is known that the set of permutations, under the pattern containment ordering, is not a partial well-order. Characterizing the partially well-ordered closed sets (equivalently: down sets or ideals) in this poset remains a wide-open problem. Given a $0/\pm1$ matrix $M$, we define a closed set of permutations called the profile class of $M$. These sets are generalizations of sets considered by Atkinson, Murphy, and Ruškuc. We show that the profile class of $M$ is partially well-ordered if and only if a related graph is a forest. Related to the antichains we construct to prove one of the directions of this result, we construct exotic fundamental antichains, which lack the periodicity exhibited by all previously known fundamental antichains of permutations.</description><issn>1077-8926</issn><issn>1077-8926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNpNj7tKBDEUQIMouK77D2ksoze5eZYy-FhY2CkUyyFkbmAkuyPJWPj3Pgurc6oDh7GNhGt0Cu2NtD6csJUE54QPyp7-83N20dorgFQhmBVzfZ3zVIh3JbZGjcfjyPtYlykW_kKliH0dqfI8V95TPbwvcZnmY7tkZzmWRps_rtnz_d1T9yh2-4dtd7sTSaJehI3J-phQJQygvgxs9nZ0lNCANUbJpLN2bgRtfNBIRoEyWYFFSUkZXLOr326qc2uV8vBWp0OsH4OE4ed2-L7FT6dgRIk</recordid><startdate>20031023</startdate><enddate>20031023</enddate><creator>Murphy, Maximillian M.</creator><creator>Vatter, Vincent R.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20031023</creationdate><title>Profile Classes and Partial Well-Order for Permutations</title><author>Murphy, Maximillian M. ; Vatter, Vincent R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c134t-6ac68ac32c39028ac06f86d7ec35065521c4f477d0458943e52025f20631ec253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Murphy, Maximillian M.</creatorcontrib><creatorcontrib>Vatter, Vincent R.</creatorcontrib><collection>CrossRef</collection><jtitle>The Electronic journal of combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Murphy, Maximillian M.</au><au>Vatter, Vincent R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Profile Classes and Partial Well-Order for Permutations</atitle><jtitle>The Electronic journal of combinatorics</jtitle><date>2003-10-23</date><risdate>2003</risdate><volume>9</volume><issue>2</issue><issn>1077-8926</issn><eissn>1077-8926</eissn><abstract>It is known that the set of permutations, under the pattern containment ordering, is not a partial well-order. Characterizing the partially well-ordered closed sets (equivalently: down sets or ideals) in this poset remains a wide-open problem. Given a $0/\pm1$ matrix $M$, we define a closed set of permutations called the profile class of $M$. These sets are generalizations of sets considered by Atkinson, Murphy, and Ruškuc. We show that the profile class of $M$ is partially well-ordered if and only if a related graph is a forest. Related to the antichains we construct to prove one of the directions of this result, we construct exotic fundamental antichains, which lack the periodicity exhibited by all previously known fundamental antichains of permutations.</abstract><doi>10.37236/1689</doi></addata></record>
fulltext fulltext
identifier ISSN: 1077-8926
ispartof The Electronic journal of combinatorics, 2003-10, Vol.9 (2)
issn 1077-8926
1077-8926
language eng
recordid cdi_crossref_primary_10_37236_1689
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title Profile Classes and Partial Well-Order for Permutations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T23%3A41%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Profile%20Classes%20and%20Partial%20Well-Order%20for%20Permutations&rft.jtitle=The%20Electronic%20journal%20of%20combinatorics&rft.au=Murphy,%20Maximillian%20M.&rft.date=2003-10-23&rft.volume=9&rft.issue=2&rft.issn=1077-8926&rft.eissn=1077-8926&rft_id=info:doi/10.37236/1689&rft_dat=%3Ccrossref%3E10_37236_1689%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true