Permutations that Separate Close Elements, and Rectangle Packings in the Torus

Let $n$, $s$ and $k$ be positive integers. For distinct $i,j\in\mathbb{Z}_n$, define $||i,j||_n$ to be the distance between $i$ and $j$ when the elements of $\mathbb{Z}_n$ are written in a circle. So\[||i,j||_n=\min\{(i-j)\bmod n,(j-i)\bmod n\}.\]A permutation $\pi:\mathbb{Z}_n\rightarrow\mathbb {Z}...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Electronic journal of combinatorics 2024-11, Vol.31 (4)
Hauptverfasser: Blackburn, Simon R., Etzion, Tuvi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title The Electronic journal of combinatorics
container_volume 31
creator Blackburn, Simon R.
Etzion, Tuvi
description Let $n$, $s$ and $k$ be positive integers. For distinct $i,j\in\mathbb{Z}_n$, define $||i,j||_n$ to be the distance between $i$ and $j$ when the elements of $\mathbb{Z}_n$ are written in a circle. So\[||i,j||_n=\min\{(i-j)\bmod n,(j-i)\bmod n\}.\]A permutation $\pi:\mathbb{Z}_n\rightarrow\mathbb {Z}_n$ is $(s,k)$-clash-free if $||\pi(i),\pi(j)||_n\geq k$ whenever $||i,j||_n
doi_str_mv 10.37236/12711
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_37236_12711</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_37236_12711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c148t-dc22fa1a0116c4674f13e8ab8059d58c1d9103750c6d9bbc5cd4c180d7920d153</originalsourceid><addsrcrecordid>eNpNkLFOwzAURS0EEqXAN3hiIuBnx7E9oqgUpAoqKHP0YjslkDiV7Q78PagwMJ27nDscQi6B3QjFRXULXAEckRkwpQpteHX8b5-Ss5Q-GANujJyRp7WP4z5j7qeQaH7HTF_9DiNmT-thSp4uBj_6kNM1xeDoi7cZw3bwdI32sw_bRPvw43m6meI-nZOTDofkL_44J2_3i039UKyel4_13aqwUOpcOMt5h4AMoLJlpcoOhNfYaiaNk9qCM8CEksxWzrStldaVFjRzynDmQIo5ufr9tXFKKfqu2cV-xPjVAGsOFZpDBfENO39OHw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Permutations that Separate Close Elements, and Rectangle Packings in the Torus</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Blackburn, Simon R. ; Etzion, Tuvi</creator><creatorcontrib>Blackburn, Simon R. ; Etzion, Tuvi</creatorcontrib><description>Let $n$, $s$ and $k$ be positive integers. For distinct $i,j\in\mathbb{Z}_n$, define $||i,j||_n$ to be the distance between $i$ and $j$ when the elements of $\mathbb{Z}_n$ are written in a circle. So\[||i,j||_n=\min\{(i-j)\bmod n,(j-i)\bmod n\}.\]A permutation $\pi:\mathbb{Z}_n\rightarrow\mathbb {Z}_n$ is $(s,k)$-clash-free if $||\pi(i),\pi(j)||_n\geq k$ whenever $||i,j||_n&lt;s$. So an $(s,k)$-clash-free permutation moves every pair of close elements (at distance less than $s$) to a pair of elements at large distance (at distance at least $k$). The notion of an $(s,k)$-clash-free permutation can be reformulated in terms of certain packings of $s\times k$ rectangles on an $n\times n$ torus. For integers $n$ and $k$ with $1\leq k&lt;n$, let $\sigma(n,k)$ be the largest value of $s$ such that an $(s,k)$-clash-free permutation of $\mathbb{Z}_n$ exists. Strengthening a recent paper of Blackburn, which proved a conjecture of Mammoliti and Simpson, we determine the value of $\sigma(n,k)$ in all cases.</description><identifier>ISSN: 1077-8926</identifier><identifier>EISSN: 1077-8926</identifier><identifier>DOI: 10.37236/12711</identifier><language>eng</language><ispartof>The Electronic journal of combinatorics, 2024-11, Vol.31 (4)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Blackburn, Simon R.</creatorcontrib><creatorcontrib>Etzion, Tuvi</creatorcontrib><title>Permutations that Separate Close Elements, and Rectangle Packings in the Torus</title><title>The Electronic journal of combinatorics</title><description>Let $n$, $s$ and $k$ be positive integers. For distinct $i,j\in\mathbb{Z}_n$, define $||i,j||_n$ to be the distance between $i$ and $j$ when the elements of $\mathbb{Z}_n$ are written in a circle. So\[||i,j||_n=\min\{(i-j)\bmod n,(j-i)\bmod n\}.\]A permutation $\pi:\mathbb{Z}_n\rightarrow\mathbb {Z}_n$ is $(s,k)$-clash-free if $||\pi(i),\pi(j)||_n\geq k$ whenever $||i,j||_n&lt;s$. So an $(s,k)$-clash-free permutation moves every pair of close elements (at distance less than $s$) to a pair of elements at large distance (at distance at least $k$). The notion of an $(s,k)$-clash-free permutation can be reformulated in terms of certain packings of $s\times k$ rectangles on an $n\times n$ torus. For integers $n$ and $k$ with $1\leq k&lt;n$, let $\sigma(n,k)$ be the largest value of $s$ such that an $(s,k)$-clash-free permutation of $\mathbb{Z}_n$ exists. Strengthening a recent paper of Blackburn, which proved a conjecture of Mammoliti and Simpson, we determine the value of $\sigma(n,k)$ in all cases.</description><issn>1077-8926</issn><issn>1077-8926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkLFOwzAURS0EEqXAN3hiIuBnx7E9oqgUpAoqKHP0YjslkDiV7Q78PagwMJ27nDscQi6B3QjFRXULXAEckRkwpQpteHX8b5-Ss5Q-GANujJyRp7WP4z5j7qeQaH7HTF_9DiNmT-thSp4uBj_6kNM1xeDoi7cZw3bwdI32sw_bRPvw43m6meI-nZOTDofkL_44J2_3i039UKyel4_13aqwUOpcOMt5h4AMoLJlpcoOhNfYaiaNk9qCM8CEksxWzrStldaVFjRzynDmQIo5ufr9tXFKKfqu2cV-xPjVAGsOFZpDBfENO39OHw</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Blackburn, Simon R.</creator><creator>Etzion, Tuvi</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241101</creationdate><title>Permutations that Separate Close Elements, and Rectangle Packings in the Torus</title><author>Blackburn, Simon R. ; Etzion, Tuvi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c148t-dc22fa1a0116c4674f13e8ab8059d58c1d9103750c6d9bbc5cd4c180d7920d153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blackburn, Simon R.</creatorcontrib><creatorcontrib>Etzion, Tuvi</creatorcontrib><collection>CrossRef</collection><jtitle>The Electronic journal of combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blackburn, Simon R.</au><au>Etzion, Tuvi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Permutations that Separate Close Elements, and Rectangle Packings in the Torus</atitle><jtitle>The Electronic journal of combinatorics</jtitle><date>2024-11-01</date><risdate>2024</risdate><volume>31</volume><issue>4</issue><issn>1077-8926</issn><eissn>1077-8926</eissn><abstract>Let $n$, $s$ and $k$ be positive integers. For distinct $i,j\in\mathbb{Z}_n$, define $||i,j||_n$ to be the distance between $i$ and $j$ when the elements of $\mathbb{Z}_n$ are written in a circle. So\[||i,j||_n=\min\{(i-j)\bmod n,(j-i)\bmod n\}.\]A permutation $\pi:\mathbb{Z}_n\rightarrow\mathbb {Z}_n$ is $(s,k)$-clash-free if $||\pi(i),\pi(j)||_n\geq k$ whenever $||i,j||_n&lt;s$. So an $(s,k)$-clash-free permutation moves every pair of close elements (at distance less than $s$) to a pair of elements at large distance (at distance at least $k$). The notion of an $(s,k)$-clash-free permutation can be reformulated in terms of certain packings of $s\times k$ rectangles on an $n\times n$ torus. For integers $n$ and $k$ with $1\leq k&lt;n$, let $\sigma(n,k)$ be the largest value of $s$ such that an $(s,k)$-clash-free permutation of $\mathbb{Z}_n$ exists. Strengthening a recent paper of Blackburn, which proved a conjecture of Mammoliti and Simpson, we determine the value of $\sigma(n,k)$ in all cases.</abstract><doi>10.37236/12711</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1077-8926
ispartof The Electronic journal of combinatorics, 2024-11, Vol.31 (4)
issn 1077-8926
1077-8926
language eng
recordid cdi_crossref_primary_10_37236_12711
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
title Permutations that Separate Close Elements, and Rectangle Packings in the Torus
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T23%3A05%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Permutations%20that%20Separate%20Close%20Elements,%20and%20Rectangle%20Packings%20in%20the%20Torus&rft.jtitle=The%20Electronic%20journal%20of%20combinatorics&rft.au=Blackburn,%20Simon%20R.&rft.date=2024-11-01&rft.volume=31&rft.issue=4&rft.issn=1077-8926&rft.eissn=1077-8926&rft_id=info:doi/10.37236/12711&rft_dat=%3Ccrossref%3E10_37236_12711%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true