Permutations Avoiding Bipartite Partially Ordered Patterns Have a Regular Insertion Encoding
We prove that any class of permutations defined by avoiding a partially ordered pattern (POP) with height at most two has a regular insertion encoding and thus has a rational generating function. Then, we use Combinatorial Exploration to find combinatorial specifications and generating functions for...
Gespeichert in:
Veröffentlicht in: | The Electronic journal of combinatorics 2024-07, Vol.31 (3) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that any class of permutations defined by avoiding a partially ordered pattern (POP) with height at most two has a regular insertion encoding and thus has a rational generating function. Then, we use Combinatorial Exploration to find combinatorial specifications and generating functions for hundreds of other permutation classes defined by avoiding a size 5 POP, allowing us to resolve several conjectures of Gao and Kitaev (2019) and of Chen and Lin (2024). |
---|---|
ISSN: | 1077-8926 1077-8926 |
DOI: | 10.37236/12686 |