Spectral Radius of Graphs with Given Size and Odd Girth

Let $\mathcal{G}(m,k)$ be the set of graphs with size $m$ and odd girth (the length of shortest odd cycle) $k$. In this paper, we determine the graph maximizing the spectral radius among $\mathcal{G}(m,k)$ when $m$ is odd. As byproducts, we show that, there is a number $\eta(m,k)>\sqrt{m-k+3}$ su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Electronic journal of combinatorics 2024-03, Vol.31 (1)
Hauptverfasser: Lou, Zhenzhen, Lu, Lu, Huang, Xueyi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title The Electronic journal of combinatorics
container_volume 31
creator Lou, Zhenzhen
Lu, Lu
Huang, Xueyi
description Let $\mathcal{G}(m,k)$ be the set of graphs with size $m$ and odd girth (the length of shortest odd cycle) $k$. In this paper, we determine the graph maximizing the spectral radius among $\mathcal{G}(m,k)$ when $m$ is odd. As byproducts, we show that, there is a number $\eta(m,k)>\sqrt{m-k+3}$ such that every non bipartite graph $G$ with size $m$ and spectral radius $\rho\ge \eta(m,k)$ must contain an odd cycle of length less than $k$ unless $m$ is odd and $G\cong SK_{k,m}$, which is the graph obtained by subdividing an edge $k-2$ times of the complete bipartite graph $K_{2,\frac{m-k+2}{2}}$. This result implies the main results of Zhai and Shu [Discrete Math. 345 (2022)] and settles a conjecture of Li and Peng  [The Electronic J. Combin. 29 (4) (2022)] as well.
doi_str_mv 10.37236/11720
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_37236_11720</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_37236_11720</sourcerecordid><originalsourceid>FETCH-LOGICAL-c255t-beee5ace84eb134d561fcbc6333d355af945a8047427581ece39024b82071313</originalsourceid><addsrcrecordid>eNpNj8FKAzEURYMoWKt-Q1buRvPykkmylKJToVCw3Q-Z5IUZqe2QjIp-vVJduDqXs7hwGLsGcYtGYn0HYKQ4YTMQxlTWyfr03z5nF6W8CAHSOT1jZjNSmLLf8Wcfh7fCD4k32Y994R_D1PNmeKc93wxfxP0-8nWMPypP_SU7S35X6OqPc7Z9fNgultVq3Twt7ldVkFpPVUdE2geyijpAFXUNKXShRsSIWvvklPZWKKOk0RYoEDohVWelMICAc3bzexvyoZRMqR3z8OrzZwuiPda2x1r8BqQTRIc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Spectral Radius of Graphs with Given Size and Odd Girth</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Lou, Zhenzhen ; Lu, Lu ; Huang, Xueyi</creator><creatorcontrib>Lou, Zhenzhen ; Lu, Lu ; Huang, Xueyi</creatorcontrib><description>Let $\mathcal{G}(m,k)$ be the set of graphs with size $m$ and odd girth (the length of shortest odd cycle) $k$. In this paper, we determine the graph maximizing the spectral radius among $\mathcal{G}(m,k)$ when $m$ is odd. As byproducts, we show that, there is a number $\eta(m,k)&gt;\sqrt{m-k+3}$ such that every non bipartite graph $G$ with size $m$ and spectral radius $\rho\ge \eta(m,k)$ must contain an odd cycle of length less than $k$ unless $m$ is odd and $G\cong SK_{k,m}$, which is the graph obtained by subdividing an edge $k-2$ times of the complete bipartite graph $K_{2,\frac{m-k+2}{2}}$. This result implies the main results of Zhai and Shu [Discrete Math. 345 (2022)] and settles a conjecture of Li and Peng  [The Electronic J. Combin. 29 (4) (2022)] as well.</description><identifier>ISSN: 1077-8926</identifier><identifier>EISSN: 1077-8926</identifier><identifier>DOI: 10.37236/11720</identifier><language>eng</language><ispartof>The Electronic journal of combinatorics, 2024-03, Vol.31 (1)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c255t-beee5ace84eb134d561fcbc6333d355af945a8047427581ece39024b82071313</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27903,27904</link.rule.ids></links><search><creatorcontrib>Lou, Zhenzhen</creatorcontrib><creatorcontrib>Lu, Lu</creatorcontrib><creatorcontrib>Huang, Xueyi</creatorcontrib><title>Spectral Radius of Graphs with Given Size and Odd Girth</title><title>The Electronic journal of combinatorics</title><description>Let $\mathcal{G}(m,k)$ be the set of graphs with size $m$ and odd girth (the length of shortest odd cycle) $k$. In this paper, we determine the graph maximizing the spectral radius among $\mathcal{G}(m,k)$ when $m$ is odd. As byproducts, we show that, there is a number $\eta(m,k)&gt;\sqrt{m-k+3}$ such that every non bipartite graph $G$ with size $m$ and spectral radius $\rho\ge \eta(m,k)$ must contain an odd cycle of length less than $k$ unless $m$ is odd and $G\cong SK_{k,m}$, which is the graph obtained by subdividing an edge $k-2$ times of the complete bipartite graph $K_{2,\frac{m-k+2}{2}}$. This result implies the main results of Zhai and Shu [Discrete Math. 345 (2022)] and settles a conjecture of Li and Peng  [The Electronic J. Combin. 29 (4) (2022)] as well.</description><issn>1077-8926</issn><issn>1077-8926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNj8FKAzEURYMoWKt-Q1buRvPykkmylKJToVCw3Q-Z5IUZqe2QjIp-vVJduDqXs7hwGLsGcYtGYn0HYKQ4YTMQxlTWyfr03z5nF6W8CAHSOT1jZjNSmLLf8Wcfh7fCD4k32Y994R_D1PNmeKc93wxfxP0-8nWMPypP_SU7S35X6OqPc7Z9fNgultVq3Twt7ldVkFpPVUdE2geyijpAFXUNKXShRsSIWvvklPZWKKOk0RYoEDohVWelMICAc3bzexvyoZRMqR3z8OrzZwuiPda2x1r8BqQTRIc</recordid><startdate>20240308</startdate><enddate>20240308</enddate><creator>Lou, Zhenzhen</creator><creator>Lu, Lu</creator><creator>Huang, Xueyi</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240308</creationdate><title>Spectral Radius of Graphs with Given Size and Odd Girth</title><author>Lou, Zhenzhen ; Lu, Lu ; Huang, Xueyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c255t-beee5ace84eb134d561fcbc6333d355af945a8047427581ece39024b82071313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lou, Zhenzhen</creatorcontrib><creatorcontrib>Lu, Lu</creatorcontrib><creatorcontrib>Huang, Xueyi</creatorcontrib><collection>CrossRef</collection><jtitle>The Electronic journal of combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lou, Zhenzhen</au><au>Lu, Lu</au><au>Huang, Xueyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectral Radius of Graphs with Given Size and Odd Girth</atitle><jtitle>The Electronic journal of combinatorics</jtitle><date>2024-03-08</date><risdate>2024</risdate><volume>31</volume><issue>1</issue><issn>1077-8926</issn><eissn>1077-8926</eissn><abstract>Let $\mathcal{G}(m,k)$ be the set of graphs with size $m$ and odd girth (the length of shortest odd cycle) $k$. In this paper, we determine the graph maximizing the spectral radius among $\mathcal{G}(m,k)$ when $m$ is odd. As byproducts, we show that, there is a number $\eta(m,k)&gt;\sqrt{m-k+3}$ such that every non bipartite graph $G$ with size $m$ and spectral radius $\rho\ge \eta(m,k)$ must contain an odd cycle of length less than $k$ unless $m$ is odd and $G\cong SK_{k,m}$, which is the graph obtained by subdividing an edge $k-2$ times of the complete bipartite graph $K_{2,\frac{m-k+2}{2}}$. This result implies the main results of Zhai and Shu [Discrete Math. 345 (2022)] and settles a conjecture of Li and Peng  [The Electronic J. Combin. 29 (4) (2022)] as well.</abstract><doi>10.37236/11720</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1077-8926
ispartof The Electronic journal of combinatorics, 2024-03, Vol.31 (1)
issn 1077-8926
1077-8926
language eng
recordid cdi_crossref_primary_10_37236_11720
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title Spectral Radius of Graphs with Given Size and Odd Girth
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T08%3A59%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectral%20Radius%20of%20Graphs%20with%20Given%20Size%20and%20Odd%20Girth&rft.jtitle=The%20Electronic%20journal%20of%20combinatorics&rft.au=Lou,%20Zhenzhen&rft.date=2024-03-08&rft.volume=31&rft.issue=1&rft.issn=1077-8926&rft.eissn=1077-8926&rft_id=info:doi/10.37236/11720&rft_dat=%3Ccrossref%3E10_37236_11720%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true