Finslerian Viewpoint to the Rectifying, Normal, and Osculating Curves
The theory of Finsler metric was introduced by Paul Finsler, in 1918. The author defines this metric using the Minkowski norm instead of the inner product. Therefore, this geometry is a more general metric and includes the Riemannian metric. In the present work, using the Finsler metric, we investig...
Gespeichert in:
Veröffentlicht in: | International Electronic Journal of Geometry 2022-04, Vol.15 (1), p.30-38 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The theory of Finsler metric was introduced by Paul Finsler, in 1918. The author defines this metric using the Minkowski norm instead of the inner product. Therefore, this geometry is a more general metric and includes the Riemannian metric. In the present work, using the Finsler metric, we investigate the position vector of the rectifying, normal and osculating curves in Finslerian 3-space $\mathbb{F}^{3}$. We obtain the general characterizations of these curves in $\mathbb{F}^{3}$. Furthermore, we show that rectifying curves are extremal curves derived from the Finslerian spherical curve. We also plotted various examples by using the Randers metrics. |
---|---|
ISSN: | 1307-5624 1307-5624 |
DOI: | 10.36890/iejg.993188 |