Canal Surface Whose Center Curve is a Hyperbolic Curve with Hyperbolic Frame
In this paper, we obtain the parametrization of the canal surfaces whose center curves are the hyperbolic curves on the hyperbolic space $H^{2}$ in $%\mathbb{E}_{1}^{3}$. The parametrization of the canal surface is expressed according to the hyperbolic frame given in [10]. Then, the parallelsurface...
Gespeichert in:
Veröffentlicht in: | International Electronic Journal of Geometry 2021-04, Vol.14 (1), p.106-120 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 120 |
---|---|
container_issue | 1 |
container_start_page | 106 |
container_title | International Electronic Journal of Geometry |
container_volume | 14 |
creator | Uçum, Ali |
description | In this paper, we obtain the parametrization of the canal surfaces whose center curves are the hyperbolic curves on the hyperbolic space $H^{2}$ in $%\mathbb{E}_{1}^{3}$. The parametrization of the canal surface is expressed according to the hyperbolic frame given in [10]. Then, the parallelsurface of this surface is studied. Also, we define the notion of the associated canal surface. Lastly, we give the geometric properties of thesesurfaces such that Weingarten surface, $\left( X,Y\right) $-Weingarten surface and linear Weingarten surface. |
doi_str_mv | 10.36890/iejg.829766 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_36890_iejg_829766</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_36890_iejg_829766</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-950471a14c42bae91d65708ef7ef66bae5f888ed7dafe21be04d4d8aab19679c3</originalsourceid><addsrcrecordid>eNpNkLtOwzAYRi0EElXpxgP4AUjxLb6MKKIUKRIDIMboj_2bpkqbyk5BfXsu7dDp-3SGMxxCbjmbS20du-9w_Tm3whmtL8iES2aKUgt1efavySznNWNMCi6F4hNSV7CFnr7uUwSP9GM1ZKQVbkdMtNqnL6RdpkCXhx2mdug7f6Lf3bg6p4sEG7whVxH6jLPTTsn74vGtWhb1y9Nz9VAXXhg5Fq5kynDgyivRAjoedGmYxWgwav1LymitxWACRBS8RaaCChag5U4b5-WU3B29Pg05J4zNLnUbSIeGs-Y_RvMXoznGkD8F61Lb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Canal Surface Whose Center Curve is a Hyperbolic Curve with Hyperbolic Frame</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Uçum, Ali</creator><creatorcontrib>Uçum, Ali</creatorcontrib><description>In this paper, we obtain the parametrization of the canal surfaces whose center curves are the hyperbolic curves on the hyperbolic space $H^{2}$ in $%\mathbb{E}_{1}^{3}$. The parametrization of the canal surface is expressed according to the hyperbolic frame given in [10]. Then, the parallelsurface of this surface is studied. Also, we define the notion of the associated canal surface. Lastly, we give the geometric properties of thesesurfaces such that Weingarten surface, $\left( X,Y\right) $-Weingarten surface and linear Weingarten surface.</description><identifier>ISSN: 1307-5624</identifier><identifier>EISSN: 1307-5624</identifier><identifier>DOI: 10.36890/iejg.829766</identifier><language>eng</language><ispartof>International Electronic Journal of Geometry, 2021-04, Vol.14 (1), p.106-120</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c273t-950471a14c42bae91d65708ef7ef66bae5f888ed7dafe21be04d4d8aab19679c3</citedby><cites>FETCH-LOGICAL-c273t-950471a14c42bae91d65708ef7ef66bae5f888ed7dafe21be04d4d8aab19679c3</cites><orcidid>0000-0003-0172-1531</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Uçum, Ali</creatorcontrib><title>Canal Surface Whose Center Curve is a Hyperbolic Curve with Hyperbolic Frame</title><title>International Electronic Journal of Geometry</title><description>In this paper, we obtain the parametrization of the canal surfaces whose center curves are the hyperbolic curves on the hyperbolic space $H^{2}$ in $%\mathbb{E}_{1}^{3}$. The parametrization of the canal surface is expressed according to the hyperbolic frame given in [10]. Then, the parallelsurface of this surface is studied. Also, we define the notion of the associated canal surface. Lastly, we give the geometric properties of thesesurfaces such that Weingarten surface, $\left( X,Y\right) $-Weingarten surface and linear Weingarten surface.</description><issn>1307-5624</issn><issn>1307-5624</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpNkLtOwzAYRi0EElXpxgP4AUjxLb6MKKIUKRIDIMboj_2bpkqbyk5BfXsu7dDp-3SGMxxCbjmbS20du-9w_Tm3whmtL8iES2aKUgt1efavySznNWNMCi6F4hNSV7CFnr7uUwSP9GM1ZKQVbkdMtNqnL6RdpkCXhx2mdug7f6Lf3bg6p4sEG7whVxH6jLPTTsn74vGtWhb1y9Nz9VAXXhg5Fq5kynDgyivRAjoedGmYxWgwav1LymitxWACRBS8RaaCChag5U4b5-WU3B29Pg05J4zNLnUbSIeGs-Y_RvMXoznGkD8F61Lb</recordid><startdate>20210415</startdate><enddate>20210415</enddate><creator>Uçum, Ali</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0172-1531</orcidid></search><sort><creationdate>20210415</creationdate><title>Canal Surface Whose Center Curve is a Hyperbolic Curve with Hyperbolic Frame</title><author>Uçum, Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-950471a14c42bae91d65708ef7ef66bae5f888ed7dafe21be04d4d8aab19679c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Uçum, Ali</creatorcontrib><collection>CrossRef</collection><jtitle>International Electronic Journal of Geometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Uçum, Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Canal Surface Whose Center Curve is a Hyperbolic Curve with Hyperbolic Frame</atitle><jtitle>International Electronic Journal of Geometry</jtitle><date>2021-04-15</date><risdate>2021</risdate><volume>14</volume><issue>1</issue><spage>106</spage><epage>120</epage><pages>106-120</pages><issn>1307-5624</issn><eissn>1307-5624</eissn><abstract>In this paper, we obtain the parametrization of the canal surfaces whose center curves are the hyperbolic curves on the hyperbolic space $H^{2}$ in $%\mathbb{E}_{1}^{3}$. The parametrization of the canal surface is expressed according to the hyperbolic frame given in [10]. Then, the parallelsurface of this surface is studied. Also, we define the notion of the associated canal surface. Lastly, we give the geometric properties of thesesurfaces such that Weingarten surface, $\left( X,Y\right) $-Weingarten surface and linear Weingarten surface.</abstract><doi>10.36890/iejg.829766</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-0172-1531</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1307-5624 |
ispartof | International Electronic Journal of Geometry, 2021-04, Vol.14 (1), p.106-120 |
issn | 1307-5624 1307-5624 |
language | eng |
recordid | cdi_crossref_primary_10_36890_iejg_829766 |
source | EZB-FREE-00999 freely available EZB journals |
title | Canal Surface Whose Center Curve is a Hyperbolic Curve with Hyperbolic Frame |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A48%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Canal%20Surface%20Whose%20Center%20Curve%20is%20a%20Hyperbolic%20Curve%20with%20Hyperbolic%20Frame&rft.jtitle=International%20Electronic%20Journal%20of%20Geometry&rft.au=U%C3%A7um,%20Ali&rft.date=2021-04-15&rft.volume=14&rft.issue=1&rft.spage=106&rft.epage=120&rft.pages=106-120&rft.issn=1307-5624&rft.eissn=1307-5624&rft_id=info:doi/10.36890/iejg.829766&rft_dat=%3Ccrossref%3E10_36890_iejg_829766%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |