Envelopes of Bisection Lines of Polygons
A bisection line divides a convex planar curve into two parts with equal areas. It is natural to study the envelope of these lines, which in general present singularities. The polygonal case is particularly interesting, since there are several different notions of a discrete envelope. In this paper,...
Gespeichert in:
Veröffentlicht in: | International Electronic Journal of Geometry 2024-10, Vol.17 (2), p.421-436 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 436 |
---|---|
container_issue | 2 |
container_start_page | 421 |
container_title | International Electronic Journal of Geometry |
container_volume | 17 |
creator | Marques Da Silva, Joel Craizer, Marcos |
description | A bisection line divides a convex planar curve into two parts with equal areas. It is natural to study the envelope of these lines, which in general present singularities. The polygonal case is particularly interesting, since there are several different notions of a discrete envelope. In this paper, we study three different notions of discrete envelopes of bisection lines and the connections between them. |
doi_str_mv | 10.36890/iejg.1512613 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_36890_iejg_1512613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_36890_iejg_1512613</sourcerecordid><originalsourceid>FETCH-LOGICAL-c162t-7f2e856cc37f15a88966716253cbaf5f99d6b39fc09e1da4b47eb485482538463</originalsourceid><addsrcrecordid>eNpNj01LAzEYhIMoWGqP3vfoJTVv3nwetdQPWLCHeg7ZNCkp66ZsitB_b7U9eJphZhh4CLkHNkdlLHvMcbedgwSuAK_IBJBpKhUX1__8LZnVumOMIQfkAibkYTl8x77sY21Kap5zjeGQy9C0eThHq9Ift2Wod-Qm-b7G2UWn5PNluV680fbj9X3x1NIAih-oTjwaqUJAnUB6Y6xS-tRIDJ1PMlm7UR3aFJiNsPGiEzp2wkhhThMjFE4JPf-GsdQ6xuT2Y_7y49EBc3-k7pfUXUjxBwCwRSw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Envelopes of Bisection Lines of Polygons</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Marques Da Silva, Joel ; Craizer, Marcos</creator><creatorcontrib>Marques Da Silva, Joel ; Craizer, Marcos</creatorcontrib><description>A bisection line divides a convex planar curve into two parts with equal areas. It is natural to study the envelope of these lines, which in general present singularities. The polygonal case is particularly interesting, since there are several different notions of a discrete envelope. In this paper, we study three different notions of discrete envelopes of bisection lines and the connections between them.</description><identifier>ISSN: 1307-5624</identifier><identifier>EISSN: 1307-5624</identifier><identifier>DOI: 10.36890/iejg.1512613</identifier><language>eng</language><ispartof>International Electronic Journal of Geometry, 2024-10, Vol.17 (2), p.421-436</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c162t-7f2e856cc37f15a88966716253cbaf5f99d6b39fc09e1da4b47eb485482538463</cites><orcidid>0000-0003-4477-8853 ; 0009-0007-6609-562X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Marques Da Silva, Joel</creatorcontrib><creatorcontrib>Craizer, Marcos</creatorcontrib><title>Envelopes of Bisection Lines of Polygons</title><title>International Electronic Journal of Geometry</title><description>A bisection line divides a convex planar curve into two parts with equal areas. It is natural to study the envelope of these lines, which in general present singularities. The polygonal case is particularly interesting, since there are several different notions of a discrete envelope. In this paper, we study three different notions of discrete envelopes of bisection lines and the connections between them.</description><issn>1307-5624</issn><issn>1307-5624</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNj01LAzEYhIMoWGqP3vfoJTVv3nwetdQPWLCHeg7ZNCkp66ZsitB_b7U9eJphZhh4CLkHNkdlLHvMcbedgwSuAK_IBJBpKhUX1__8LZnVumOMIQfkAibkYTl8x77sY21Kap5zjeGQy9C0eThHq9Ift2Wod-Qm-b7G2UWn5PNluV680fbj9X3x1NIAih-oTjwaqUJAnUB6Y6xS-tRIDJ1PMlm7UR3aFJiNsPGiEzp2wkhhThMjFE4JPf-GsdQ6xuT2Y_7y49EBc3-k7pfUXUjxBwCwRSw</recordid><startdate>20241027</startdate><enddate>20241027</enddate><creator>Marques Da Silva, Joel</creator><creator>Craizer, Marcos</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4477-8853</orcidid><orcidid>https://orcid.org/0009-0007-6609-562X</orcidid></search><sort><creationdate>20241027</creationdate><title>Envelopes of Bisection Lines of Polygons</title><author>Marques Da Silva, Joel ; Craizer, Marcos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c162t-7f2e856cc37f15a88966716253cbaf5f99d6b39fc09e1da4b47eb485482538463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marques Da Silva, Joel</creatorcontrib><creatorcontrib>Craizer, Marcos</creatorcontrib><collection>CrossRef</collection><jtitle>International Electronic Journal of Geometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marques Da Silva, Joel</au><au>Craizer, Marcos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Envelopes of Bisection Lines of Polygons</atitle><jtitle>International Electronic Journal of Geometry</jtitle><date>2024-10-27</date><risdate>2024</risdate><volume>17</volume><issue>2</issue><spage>421</spage><epage>436</epage><pages>421-436</pages><issn>1307-5624</issn><eissn>1307-5624</eissn><abstract>A bisection line divides a convex planar curve into two parts with equal areas. It is natural to study the envelope of these lines, which in general present singularities. The polygonal case is particularly interesting, since there are several different notions of a discrete envelope. In this paper, we study three different notions of discrete envelopes of bisection lines and the connections between them.</abstract><doi>10.36890/iejg.1512613</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-4477-8853</orcidid><orcidid>https://orcid.org/0009-0007-6609-562X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1307-5624 |
ispartof | International Electronic Journal of Geometry, 2024-10, Vol.17 (2), p.421-436 |
issn | 1307-5624 1307-5624 |
language | eng |
recordid | cdi_crossref_primary_10_36890_iejg_1512613 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
title | Envelopes of Bisection Lines of Polygons |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T20%3A15%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Envelopes%20of%20Bisection%20Lines%20of%20Polygons&rft.jtitle=International%20Electronic%20Journal%20of%20Geometry&rft.au=Marques%20Da%20Silva,%20Joel&rft.date=2024-10-27&rft.volume=17&rft.issue=2&rft.spage=421&rft.epage=436&rft.pages=421-436&rft.issn=1307-5624&rft.eissn=1307-5624&rft_id=info:doi/10.36890/iejg.1512613&rft_dat=%3Ccrossref%3E10_36890_iejg_1512613%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |