Envelopes of Bisection Lines of Polygons

A bisection line divides a convex planar curve into two parts with equal areas. It is natural to study the envelope of these lines, which in general present singularities. The polygonal case is particularly interesting, since there are several different notions of a discrete envelope. In this paper,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Electronic Journal of Geometry 2024-10, Vol.17 (2), p.421-436
Hauptverfasser: Marques Da Silva, Joel, Craizer, Marcos
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 436
container_issue 2
container_start_page 421
container_title International Electronic Journal of Geometry
container_volume 17
creator Marques Da Silva, Joel
Craizer, Marcos
description A bisection line divides a convex planar curve into two parts with equal areas. It is natural to study the envelope of these lines, which in general present singularities. The polygonal case is particularly interesting, since there are several different notions of a discrete envelope. In this paper, we study three different notions of discrete envelopes of bisection lines and the connections between them.
doi_str_mv 10.36890/iejg.1512613
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_36890_iejg_1512613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_36890_iejg_1512613</sourcerecordid><originalsourceid>FETCH-LOGICAL-c162t-7f2e856cc37f15a88966716253cbaf5f99d6b39fc09e1da4b47eb485482538463</originalsourceid><addsrcrecordid>eNpNj01LAzEYhIMoWGqP3vfoJTVv3nwetdQPWLCHeg7ZNCkp66ZsitB_b7U9eJphZhh4CLkHNkdlLHvMcbedgwSuAK_IBJBpKhUX1__8LZnVumOMIQfkAibkYTl8x77sY21Kap5zjeGQy9C0eThHq9Ift2Wod-Qm-b7G2UWn5PNluV680fbj9X3x1NIAih-oTjwaqUJAnUB6Y6xS-tRIDJ1PMlm7UR3aFJiNsPGiEzp2wkhhThMjFE4JPf-GsdQ6xuT2Y_7y49EBc3-k7pfUXUjxBwCwRSw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Envelopes of Bisection Lines of Polygons</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Marques Da Silva, Joel ; Craizer, Marcos</creator><creatorcontrib>Marques Da Silva, Joel ; Craizer, Marcos</creatorcontrib><description>A bisection line divides a convex planar curve into two parts with equal areas. It is natural to study the envelope of these lines, which in general present singularities. The polygonal case is particularly interesting, since there are several different notions of a discrete envelope. In this paper, we study three different notions of discrete envelopes of bisection lines and the connections between them.</description><identifier>ISSN: 1307-5624</identifier><identifier>EISSN: 1307-5624</identifier><identifier>DOI: 10.36890/iejg.1512613</identifier><language>eng</language><ispartof>International Electronic Journal of Geometry, 2024-10, Vol.17 (2), p.421-436</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c162t-7f2e856cc37f15a88966716253cbaf5f99d6b39fc09e1da4b47eb485482538463</cites><orcidid>0000-0003-4477-8853 ; 0009-0007-6609-562X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Marques Da Silva, Joel</creatorcontrib><creatorcontrib>Craizer, Marcos</creatorcontrib><title>Envelopes of Bisection Lines of Polygons</title><title>International Electronic Journal of Geometry</title><description>A bisection line divides a convex planar curve into two parts with equal areas. It is natural to study the envelope of these lines, which in general present singularities. The polygonal case is particularly interesting, since there are several different notions of a discrete envelope. In this paper, we study three different notions of discrete envelopes of bisection lines and the connections between them.</description><issn>1307-5624</issn><issn>1307-5624</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNj01LAzEYhIMoWGqP3vfoJTVv3nwetdQPWLCHeg7ZNCkp66ZsitB_b7U9eJphZhh4CLkHNkdlLHvMcbedgwSuAK_IBJBpKhUX1__8LZnVumOMIQfkAibkYTl8x77sY21Kap5zjeGQy9C0eThHq9Ift2Wod-Qm-b7G2UWn5PNluV680fbj9X3x1NIAih-oTjwaqUJAnUB6Y6xS-tRIDJ1PMlm7UR3aFJiNsPGiEzp2wkhhThMjFE4JPf-GsdQ6xuT2Y_7y49EBc3-k7pfUXUjxBwCwRSw</recordid><startdate>20241027</startdate><enddate>20241027</enddate><creator>Marques Da Silva, Joel</creator><creator>Craizer, Marcos</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4477-8853</orcidid><orcidid>https://orcid.org/0009-0007-6609-562X</orcidid></search><sort><creationdate>20241027</creationdate><title>Envelopes of Bisection Lines of Polygons</title><author>Marques Da Silva, Joel ; Craizer, Marcos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c162t-7f2e856cc37f15a88966716253cbaf5f99d6b39fc09e1da4b47eb485482538463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marques Da Silva, Joel</creatorcontrib><creatorcontrib>Craizer, Marcos</creatorcontrib><collection>CrossRef</collection><jtitle>International Electronic Journal of Geometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marques Da Silva, Joel</au><au>Craizer, Marcos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Envelopes of Bisection Lines of Polygons</atitle><jtitle>International Electronic Journal of Geometry</jtitle><date>2024-10-27</date><risdate>2024</risdate><volume>17</volume><issue>2</issue><spage>421</spage><epage>436</epage><pages>421-436</pages><issn>1307-5624</issn><eissn>1307-5624</eissn><abstract>A bisection line divides a convex planar curve into two parts with equal areas. It is natural to study the envelope of these lines, which in general present singularities. The polygonal case is particularly interesting, since there are several different notions of a discrete envelope. In this paper, we study three different notions of discrete envelopes of bisection lines and the connections between them.</abstract><doi>10.36890/iejg.1512613</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-4477-8853</orcidid><orcidid>https://orcid.org/0009-0007-6609-562X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1307-5624
ispartof International Electronic Journal of Geometry, 2024-10, Vol.17 (2), p.421-436
issn 1307-5624
1307-5624
language eng
recordid cdi_crossref_primary_10_36890_iejg_1512613
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title Envelopes of Bisection Lines of Polygons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T20%3A15%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Envelopes%20of%20Bisection%20Lines%20of%20Polygons&rft.jtitle=International%20Electronic%20Journal%20of%20Geometry&rft.au=Marques%20Da%20Silva,%20Joel&rft.date=2024-10-27&rft.volume=17&rft.issue=2&rft.spage=421&rft.epage=436&rft.pages=421-436&rft.issn=1307-5624&rft.eissn=1307-5624&rft_id=info:doi/10.36890/iejg.1512613&rft_dat=%3Ccrossref%3E10_36890_iejg_1512613%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true