Formulation of Control Strategies for IoT Task Scheduling

The various Internets of Things (IoT) application tasks are difficult to schedule due to heterogeneity properties of IoT. So an efficient algorithm is required that forms < task, processor> pair appropriately. This paper presents a more sensible model for varying execution times of tasks and d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of recent technology and engineering 2019-09, Vol.8 (3), p.7886-7890
Hauptverfasser: Rao A, Prasantha, Reddy, G. Sekhar, Kumar, CH.N.Santhosh, Reddy, K. S.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7890
container_issue 3
container_start_page 7886
container_title International journal of recent technology and engineering
container_volume 8
creator Rao A, Prasantha
Reddy, G. Sekhar
Kumar, CH.N.Santhosh
Reddy, K. S.
description The various Internets of Things (IoT) application tasks are difficult to schedule due to heterogeneity properties of IoT. So an efficient algorithm is required that forms < task, processor> pair appropriately. This paper presents a more sensible model for varying execution times of tasks and deviation in task parameters for building a schedule is allowed. The system provides an adaptive learning mechanism called Expected Time Matrix ETM (i, j). When the environment of the system changes dynamically, the system learns and adapts itself to the new changes automatically, since the learning mechanism has been incorporated in the system. ETM (i, j) concepts allows the system to learn from past instances as well. The work is supported by simulations that highlight the viability of concepts proposed. The key objective of this paper is to present the developed scheduling algorithm that is self-configurable and dynamic
doi_str_mv 10.35940/ijrte.C6560.098319
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_35940_ijrte_C6560_098319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_35940_ijrte_C6560_098319</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1599-403b76d0cb019cd133bad6c6e26b71cfb148717641e115556eff2de7e446b4db3</originalsourceid><addsrcrecordid>eNpN0L1OwzAYhWELgURVegUsvoEEf_FfPKKIQqVKDA2z5d-SksbITgfuHillYDrvdIYHoUcgNeWKkafhlOdQd4ILUhPVUlA3aNU0Ula0le3tv75Hm1JOhBCgAhgVK6S2KZ8vo5mHNOEUcZemOacRH-Zs5nAcQsExZbxLPe5N-cIH9xn8ZRym4wO6i2YsYfO3a_Sxfem7t2r__rrrnveVA65UxQi1UnjiLAHlPFBqjRdOhEZYCS5aYK0EKRgEAM65CDE2PsjAmLDMW7pG9Prrciolh6i_83A2-UcD0QuAXgD0AqCvAPQXkSBPWw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Formulation of Control Strategies for IoT Task Scheduling</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Rao A, Prasantha ; Reddy, G. Sekhar ; Kumar, CH.N.Santhosh ; Reddy, K. S.</creator><creatorcontrib>Rao A, Prasantha ; Reddy, G. Sekhar ; Kumar, CH.N.Santhosh ; Reddy, K. S. ; Asst. Professor IT Dept., Anurag Group of Institutions, Hyderabad, India ; CSE Department, Anurag Engg. College, Kodada, India ; Professor IT Dept., Anurag Group of Institutions, Hyderabad, India</creatorcontrib><description>The various Internets of Things (IoT) application tasks are difficult to schedule due to heterogeneity properties of IoT. So an efficient algorithm is required that forms &lt; task, processor&gt; pair appropriately. This paper presents a more sensible model for varying execution times of tasks and deviation in task parameters for building a schedule is allowed. The system provides an adaptive learning mechanism called Expected Time Matrix ETM (i, j). When the environment of the system changes dynamically, the system learns and adapts itself to the new changes automatically, since the learning mechanism has been incorporated in the system. ETM (i, j) concepts allows the system to learn from past instances as well. The work is supported by simulations that highlight the viability of concepts proposed. The key objective of this paper is to present the developed scheduling algorithm that is self-configurable and dynamic</description><identifier>ISSN: 2277-3878</identifier><identifier>EISSN: 2277-3878</identifier><identifier>DOI: 10.35940/ijrte.C6560.098319</identifier><language>eng</language><ispartof>International journal of recent technology and engineering, 2019-09, Vol.8 (3), p.7886-7890</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Rao A, Prasantha</creatorcontrib><creatorcontrib>Reddy, G. Sekhar</creatorcontrib><creatorcontrib>Kumar, CH.N.Santhosh</creatorcontrib><creatorcontrib>Reddy, K. S.</creatorcontrib><creatorcontrib>Asst. Professor IT Dept., Anurag Group of Institutions, Hyderabad, India</creatorcontrib><creatorcontrib>CSE Department, Anurag Engg. College, Kodada, India</creatorcontrib><creatorcontrib>Professor IT Dept., Anurag Group of Institutions, Hyderabad, India</creatorcontrib><title>Formulation of Control Strategies for IoT Task Scheduling</title><title>International journal of recent technology and engineering</title><description>The various Internets of Things (IoT) application tasks are difficult to schedule due to heterogeneity properties of IoT. So an efficient algorithm is required that forms &lt; task, processor&gt; pair appropriately. This paper presents a more sensible model for varying execution times of tasks and deviation in task parameters for building a schedule is allowed. The system provides an adaptive learning mechanism called Expected Time Matrix ETM (i, j). When the environment of the system changes dynamically, the system learns and adapts itself to the new changes automatically, since the learning mechanism has been incorporated in the system. ETM (i, j) concepts allows the system to learn from past instances as well. The work is supported by simulations that highlight the viability of concepts proposed. The key objective of this paper is to present the developed scheduling algorithm that is self-configurable and dynamic</description><issn>2277-3878</issn><issn>2277-3878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpN0L1OwzAYhWELgURVegUsvoEEf_FfPKKIQqVKDA2z5d-SksbITgfuHillYDrvdIYHoUcgNeWKkafhlOdQd4ILUhPVUlA3aNU0Ula0le3tv75Hm1JOhBCgAhgVK6S2KZ8vo5mHNOEUcZemOacRH-Zs5nAcQsExZbxLPe5N-cIH9xn8ZRym4wO6i2YsYfO3a_Sxfem7t2r__rrrnveVA65UxQi1UnjiLAHlPFBqjRdOhEZYCS5aYK0EKRgEAM65CDE2PsjAmLDMW7pG9Prrciolh6i_83A2-UcD0QuAXgD0AqCvAPQXkSBPWw</recordid><startdate>20190930</startdate><enddate>20190930</enddate><creator>Rao A, Prasantha</creator><creator>Reddy, G. Sekhar</creator><creator>Kumar, CH.N.Santhosh</creator><creator>Reddy, K. S.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190930</creationdate><title>Formulation of Control Strategies for IoT Task Scheduling</title><author>Rao A, Prasantha ; Reddy, G. Sekhar ; Kumar, CH.N.Santhosh ; Reddy, K. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1599-403b76d0cb019cd133bad6c6e26b71cfb148717641e115556eff2de7e446b4db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Rao A, Prasantha</creatorcontrib><creatorcontrib>Reddy, G. Sekhar</creatorcontrib><creatorcontrib>Kumar, CH.N.Santhosh</creatorcontrib><creatorcontrib>Reddy, K. S.</creatorcontrib><creatorcontrib>Asst. Professor IT Dept., Anurag Group of Institutions, Hyderabad, India</creatorcontrib><creatorcontrib>CSE Department, Anurag Engg. College, Kodada, India</creatorcontrib><creatorcontrib>Professor IT Dept., Anurag Group of Institutions, Hyderabad, India</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of recent technology and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rao A, Prasantha</au><au>Reddy, G. Sekhar</au><au>Kumar, CH.N.Santhosh</au><au>Reddy, K. S.</au><aucorp>Asst. Professor IT Dept., Anurag Group of Institutions, Hyderabad, India</aucorp><aucorp>CSE Department, Anurag Engg. College, Kodada, India</aucorp><aucorp>Professor IT Dept., Anurag Group of Institutions, Hyderabad, India</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Formulation of Control Strategies for IoT Task Scheduling</atitle><jtitle>International journal of recent technology and engineering</jtitle><date>2019-09-30</date><risdate>2019</risdate><volume>8</volume><issue>3</issue><spage>7886</spage><epage>7890</epage><pages>7886-7890</pages><issn>2277-3878</issn><eissn>2277-3878</eissn><abstract>The various Internets of Things (IoT) application tasks are difficult to schedule due to heterogeneity properties of IoT. So an efficient algorithm is required that forms &lt; task, processor&gt; pair appropriately. This paper presents a more sensible model for varying execution times of tasks and deviation in task parameters for building a schedule is allowed. The system provides an adaptive learning mechanism called Expected Time Matrix ETM (i, j). When the environment of the system changes dynamically, the system learns and adapts itself to the new changes automatically, since the learning mechanism has been incorporated in the system. ETM (i, j) concepts allows the system to learn from past instances as well. The work is supported by simulations that highlight the viability of concepts proposed. The key objective of this paper is to present the developed scheduling algorithm that is self-configurable and dynamic</abstract><doi>10.35940/ijrte.C6560.098319</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2277-3878
ispartof International journal of recent technology and engineering, 2019-09, Vol.8 (3), p.7886-7890
issn 2277-3878
2277-3878
language eng
recordid cdi_crossref_primary_10_35940_ijrte_C6560_098319
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title Formulation of Control Strategies for IoT Task Scheduling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T03%3A53%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Formulation%20of%20Control%20Strategies%20for%20IoT%20Task%20Scheduling&rft.jtitle=International%20journal%20of%20recent%20technology%20and%20engineering&rft.au=Rao%20A,%20Prasantha&rft.aucorp=Asst.%20Professor%20IT%20Dept.,%20Anurag%20Group%20of%20Institutions,%20Hyderabad,%20India&rft.date=2019-09-30&rft.volume=8&rft.issue=3&rft.spage=7886&rft.epage=7890&rft.pages=7886-7890&rft.issn=2277-3878&rft.eissn=2277-3878&rft_id=info:doi/10.35940/ijrte.C6560.098319&rft_dat=%3Ccrossref%3E10_35940_ijrte_C6560_098319%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true