Formulation of Control Strategies for IoT Task Scheduling
The various Internets of Things (IoT) application tasks are difficult to schedule due to heterogeneity properties of IoT. So an efficient algorithm is required that forms < task, processor> pair appropriately. This paper presents a more sensible model for varying execution times of tasks and d...
Gespeichert in:
Veröffentlicht in: | International journal of recent technology and engineering 2019-09, Vol.8 (3), p.7886-7890 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7890 |
---|---|
container_issue | 3 |
container_start_page | 7886 |
container_title | International journal of recent technology and engineering |
container_volume | 8 |
creator | Rao A, Prasantha Reddy, G. Sekhar Kumar, CH.N.Santhosh Reddy, K. S. |
description | The various Internets of Things (IoT) application tasks are difficult to schedule due to heterogeneity properties of IoT. So an efficient algorithm is required that forms < task, processor> pair appropriately. This paper presents a more sensible model for varying execution times of tasks and deviation in task parameters for building a schedule is allowed. The system provides an adaptive learning mechanism called Expected Time Matrix ETM (i, j). When the environment of the system changes dynamically, the system learns and adapts itself to the new changes automatically, since the learning mechanism has been incorporated in the system. ETM (i, j) concepts allows the system to learn from past instances as well. The work is supported by simulations that highlight the viability of concepts proposed. The key objective of this paper is to present the developed scheduling algorithm that is self-configurable and dynamic |
doi_str_mv | 10.35940/ijrte.C6560.098319 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_35940_ijrte_C6560_098319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_35940_ijrte_C6560_098319</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1599-403b76d0cb019cd133bad6c6e26b71cfb148717641e115556eff2de7e446b4db3</originalsourceid><addsrcrecordid>eNpN0L1OwzAYhWELgURVegUsvoEEf_FfPKKIQqVKDA2z5d-SksbITgfuHillYDrvdIYHoUcgNeWKkafhlOdQd4ILUhPVUlA3aNU0Ula0le3tv75Hm1JOhBCgAhgVK6S2KZ8vo5mHNOEUcZemOacRH-Zs5nAcQsExZbxLPe5N-cIH9xn8ZRym4wO6i2YsYfO3a_Sxfem7t2r__rrrnveVA65UxQi1UnjiLAHlPFBqjRdOhEZYCS5aYK0EKRgEAM65CDE2PsjAmLDMW7pG9Prrciolh6i_83A2-UcD0QuAXgD0AqCvAPQXkSBPWw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Formulation of Control Strategies for IoT Task Scheduling</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Rao A, Prasantha ; Reddy, G. Sekhar ; Kumar, CH.N.Santhosh ; Reddy, K. S.</creator><creatorcontrib>Rao A, Prasantha ; Reddy, G. Sekhar ; Kumar, CH.N.Santhosh ; Reddy, K. S. ; Asst. Professor IT Dept., Anurag Group of Institutions, Hyderabad, India ; CSE Department, Anurag Engg. College, Kodada, India ; Professor IT Dept., Anurag Group of Institutions, Hyderabad, India</creatorcontrib><description>The various Internets of Things (IoT) application tasks are difficult to schedule due to heterogeneity properties of IoT. So an efficient algorithm is required that forms < task, processor> pair appropriately. This paper presents a more sensible model for varying execution times of tasks and deviation in task parameters for building a schedule is allowed. The system provides an adaptive learning mechanism called Expected Time Matrix ETM (i, j). When the environment of the system changes dynamically, the system learns and adapts itself to the new changes automatically, since the learning mechanism has been incorporated in the system. ETM (i, j) concepts allows the system to learn from past instances as well. The work is supported by simulations that highlight the viability of concepts proposed. The key objective of this paper is to present the developed scheduling algorithm that is self-configurable and dynamic</description><identifier>ISSN: 2277-3878</identifier><identifier>EISSN: 2277-3878</identifier><identifier>DOI: 10.35940/ijrte.C6560.098319</identifier><language>eng</language><ispartof>International journal of recent technology and engineering, 2019-09, Vol.8 (3), p.7886-7890</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Rao A, Prasantha</creatorcontrib><creatorcontrib>Reddy, G. Sekhar</creatorcontrib><creatorcontrib>Kumar, CH.N.Santhosh</creatorcontrib><creatorcontrib>Reddy, K. S.</creatorcontrib><creatorcontrib>Asst. Professor IT Dept., Anurag Group of Institutions, Hyderabad, India</creatorcontrib><creatorcontrib>CSE Department, Anurag Engg. College, Kodada, India</creatorcontrib><creatorcontrib>Professor IT Dept., Anurag Group of Institutions, Hyderabad, India</creatorcontrib><title>Formulation of Control Strategies for IoT Task Scheduling</title><title>International journal of recent technology and engineering</title><description>The various Internets of Things (IoT) application tasks are difficult to schedule due to heterogeneity properties of IoT. So an efficient algorithm is required that forms < task, processor> pair appropriately. This paper presents a more sensible model for varying execution times of tasks and deviation in task parameters for building a schedule is allowed. The system provides an adaptive learning mechanism called Expected Time Matrix ETM (i, j). When the environment of the system changes dynamically, the system learns and adapts itself to the new changes automatically, since the learning mechanism has been incorporated in the system. ETM (i, j) concepts allows the system to learn from past instances as well. The work is supported by simulations that highlight the viability of concepts proposed. The key objective of this paper is to present the developed scheduling algorithm that is self-configurable and dynamic</description><issn>2277-3878</issn><issn>2277-3878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpN0L1OwzAYhWELgURVegUsvoEEf_FfPKKIQqVKDA2z5d-SksbITgfuHillYDrvdIYHoUcgNeWKkafhlOdQd4ILUhPVUlA3aNU0Ula0le3tv75Hm1JOhBCgAhgVK6S2KZ8vo5mHNOEUcZemOacRH-Zs5nAcQsExZbxLPe5N-cIH9xn8ZRym4wO6i2YsYfO3a_Sxfem7t2r__rrrnveVA65UxQi1UnjiLAHlPFBqjRdOhEZYCS5aYK0EKRgEAM65CDE2PsjAmLDMW7pG9Prrciolh6i_83A2-UcD0QuAXgD0AqCvAPQXkSBPWw</recordid><startdate>20190930</startdate><enddate>20190930</enddate><creator>Rao A, Prasantha</creator><creator>Reddy, G. Sekhar</creator><creator>Kumar, CH.N.Santhosh</creator><creator>Reddy, K. S.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190930</creationdate><title>Formulation of Control Strategies for IoT Task Scheduling</title><author>Rao A, Prasantha ; Reddy, G. Sekhar ; Kumar, CH.N.Santhosh ; Reddy, K. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1599-403b76d0cb019cd133bad6c6e26b71cfb148717641e115556eff2de7e446b4db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Rao A, Prasantha</creatorcontrib><creatorcontrib>Reddy, G. Sekhar</creatorcontrib><creatorcontrib>Kumar, CH.N.Santhosh</creatorcontrib><creatorcontrib>Reddy, K. S.</creatorcontrib><creatorcontrib>Asst. Professor IT Dept., Anurag Group of Institutions, Hyderabad, India</creatorcontrib><creatorcontrib>CSE Department, Anurag Engg. College, Kodada, India</creatorcontrib><creatorcontrib>Professor IT Dept., Anurag Group of Institutions, Hyderabad, India</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of recent technology and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rao A, Prasantha</au><au>Reddy, G. Sekhar</au><au>Kumar, CH.N.Santhosh</au><au>Reddy, K. S.</au><aucorp>Asst. Professor IT Dept., Anurag Group of Institutions, Hyderabad, India</aucorp><aucorp>CSE Department, Anurag Engg. College, Kodada, India</aucorp><aucorp>Professor IT Dept., Anurag Group of Institutions, Hyderabad, India</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Formulation of Control Strategies for IoT Task Scheduling</atitle><jtitle>International journal of recent technology and engineering</jtitle><date>2019-09-30</date><risdate>2019</risdate><volume>8</volume><issue>3</issue><spage>7886</spage><epage>7890</epage><pages>7886-7890</pages><issn>2277-3878</issn><eissn>2277-3878</eissn><abstract>The various Internets of Things (IoT) application tasks are difficult to schedule due to heterogeneity properties of IoT. So an efficient algorithm is required that forms < task, processor> pair appropriately. This paper presents a more sensible model for varying execution times of tasks and deviation in task parameters for building a schedule is allowed. The system provides an adaptive learning mechanism called Expected Time Matrix ETM (i, j). When the environment of the system changes dynamically, the system learns and adapts itself to the new changes automatically, since the learning mechanism has been incorporated in the system. ETM (i, j) concepts allows the system to learn from past instances as well. The work is supported by simulations that highlight the viability of concepts proposed. The key objective of this paper is to present the developed scheduling algorithm that is self-configurable and dynamic</abstract><doi>10.35940/ijrte.C6560.098319</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2277-3878 |
ispartof | International journal of recent technology and engineering, 2019-09, Vol.8 (3), p.7886-7890 |
issn | 2277-3878 2277-3878 |
language | eng |
recordid | cdi_crossref_primary_10_35940_ijrte_C6560_098319 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
title | Formulation of Control Strategies for IoT Task Scheduling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T03%3A53%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Formulation%20of%20Control%20Strategies%20for%20IoT%20Task%20Scheduling&rft.jtitle=International%20journal%20of%20recent%20technology%20and%20engineering&rft.au=Rao%20A,%20Prasantha&rft.aucorp=Asst.%20Professor%20IT%20Dept.,%20Anurag%20Group%20of%20Institutions,%20Hyderabad,%20India&rft.date=2019-09-30&rft.volume=8&rft.issue=3&rft.spage=7886&rft.epage=7890&rft.pages=7886-7890&rft.issn=2277-3878&rft.eissn=2277-3878&rft_id=info:doi/10.35940/ijrte.C6560.098319&rft_dat=%3Ccrossref%3E10_35940_ijrte_C6560_098319%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |