Prediction of Sugarcane Yields from Field Records using Regression Modeling

Prediction Of Sugarcane Crop Yield Benefits The Farmer To Get Best Possible Decision Regarding Sugarcane Crop Cultivation. The Purpose Of This Work Is To Identify Possible Relationship Between N, P, K Fertilizer, Water Resource And Planting Densities. The Algorithm Used Is Multiple Regression. The P...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of recent technology and engineering 2019-11, Vol.8 (4), p.1603-1606
Hauptverfasser: Kale, Shivani S., Patil, Dr. Preeti S.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1606
container_issue 4
container_start_page 1603
container_title International journal of recent technology and engineering
container_volume 8
creator Kale, Shivani S.
Patil, Dr. Preeti S.
description Prediction Of Sugarcane Crop Yield Benefits The Farmer To Get Best Possible Decision Regarding Sugarcane Crop Cultivation. The Purpose Of This Work Is To Identify Possible Relationship Between N, P, K Fertilizer, Water Resource And Planting Densities. The Algorithm Used Is Multiple Regression. The Paper Focuses On The Generation Of Multiple Regression Models For The Dataset Of Sugarcane Crop For Season Adasali, Suru And Preseasonal Method. The Intercept And Slope For Variables Are Calculated And Equation For Each Model Is Generated. Sample Of N,P,K And Other Are Considered For A Period Of 7 Years From 2012 To 2018. Data Of Experimentation Is Collected For Arid Region I.E. Pandharpur, Maharashtra State.
doi_str_mv 10.35940/ijrte.C4174.118419
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_35940_ijrte_C4174_118419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_35940_ijrte_C4174_118419</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1599-54c16d23aea9447744f6371b4de92149fb134594a9d8a318f3863da9274a55913</originalsourceid><addsrcrecordid>eNpNkM1OwzAQhC0EElXpE3DxCyRks5vYPqKIAqIIxM-Bk-XGdpSqjZHdHnh70pQDp50daUaaj7FrKHKsFBU3_SbuXd4QCMoBJIE6Y7OyFCJDKeT5P33JFiltiqIArIGwnrGn1-hs3-77MPDg-fuhM7E1g-NfvdvaxH0MO748av7m2hBH65D6oRu_LrqUjrnnYN129K7YhTfb5BZ_d84-l3cfzUO2erl_bG5XWQuVUllFLdS2ROOMIhKCyNcoYE3WqRJI-TUgjcOMstIgSI-yRmtUKchUlQKcMzz1tjGkFJ3X37HfmfijodATEj0h0RMSfUKCvxfIVO8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Prediction of Sugarcane Yields from Field Records using Regression Modeling</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Kale, Shivani S. ; Patil, Dr. Preeti S.</creator><creatorcontrib>Kale, Shivani S. ; Patil, Dr. Preeti S. ; Assistant professor, KIT, Kolhapur, Maharashtra, India</creatorcontrib><description>Prediction Of Sugarcane Crop Yield Benefits The Farmer To Get Best Possible Decision Regarding Sugarcane Crop Cultivation. The Purpose Of This Work Is To Identify Possible Relationship Between N, P, K Fertilizer, Water Resource And Planting Densities. The Algorithm Used Is Multiple Regression. The Paper Focuses On The Generation Of Multiple Regression Models For The Dataset Of Sugarcane Crop For Season Adasali, Suru And Preseasonal Method. The Intercept And Slope For Variables Are Calculated And Equation For Each Model Is Generated. Sample Of N,P,K And Other Are Considered For A Period Of 7 Years From 2012 To 2018. Data Of Experimentation Is Collected For Arid Region I.E. Pandharpur, Maharashtra State.</description><identifier>ISSN: 2277-3878</identifier><identifier>EISSN: 2277-3878</identifier><identifier>DOI: 10.35940/ijrte.C4174.118419</identifier><language>eng</language><ispartof>International journal of recent technology and engineering, 2019-11, Vol.8 (4), p.1603-1606</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids></links><search><creatorcontrib>Kale, Shivani S.</creatorcontrib><creatorcontrib>Patil, Dr. Preeti S.</creatorcontrib><creatorcontrib>Assistant professor, KIT, Kolhapur, Maharashtra, India</creatorcontrib><title>Prediction of Sugarcane Yields from Field Records using Regression Modeling</title><title>International journal of recent technology and engineering</title><description>Prediction Of Sugarcane Crop Yield Benefits The Farmer To Get Best Possible Decision Regarding Sugarcane Crop Cultivation. The Purpose Of This Work Is To Identify Possible Relationship Between N, P, K Fertilizer, Water Resource And Planting Densities. The Algorithm Used Is Multiple Regression. The Paper Focuses On The Generation Of Multiple Regression Models For The Dataset Of Sugarcane Crop For Season Adasali, Suru And Preseasonal Method. The Intercept And Slope For Variables Are Calculated And Equation For Each Model Is Generated. Sample Of N,P,K And Other Are Considered For A Period Of 7 Years From 2012 To 2018. Data Of Experimentation Is Collected For Arid Region I.E. Pandharpur, Maharashtra State.</description><issn>2277-3878</issn><issn>2277-3878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpNkM1OwzAQhC0EElXpE3DxCyRks5vYPqKIAqIIxM-Bk-XGdpSqjZHdHnh70pQDp50daUaaj7FrKHKsFBU3_SbuXd4QCMoBJIE6Y7OyFCJDKeT5P33JFiltiqIArIGwnrGn1-hs3-77MPDg-fuhM7E1g-NfvdvaxH0MO748av7m2hBH65D6oRu_LrqUjrnnYN129K7YhTfb5BZ_d84-l3cfzUO2erl_bG5XWQuVUllFLdS2ROOMIhKCyNcoYE3WqRJI-TUgjcOMstIgSI-yRmtUKchUlQKcMzz1tjGkFJ3X37HfmfijodATEj0h0RMSfUKCvxfIVO8</recordid><startdate>20191130</startdate><enddate>20191130</enddate><creator>Kale, Shivani S.</creator><creator>Patil, Dr. Preeti S.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20191130</creationdate><title>Prediction of Sugarcane Yields from Field Records using Regression Modeling</title><author>Kale, Shivani S. ; Patil, Dr. Preeti S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1599-54c16d23aea9447744f6371b4de92149fb134594a9d8a318f3863da9274a55913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Kale, Shivani S.</creatorcontrib><creatorcontrib>Patil, Dr. Preeti S.</creatorcontrib><creatorcontrib>Assistant professor, KIT, Kolhapur, Maharashtra, India</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of recent technology and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kale, Shivani S.</au><au>Patil, Dr. Preeti S.</au><aucorp>Assistant professor, KIT, Kolhapur, Maharashtra, India</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of Sugarcane Yields from Field Records using Regression Modeling</atitle><jtitle>International journal of recent technology and engineering</jtitle><date>2019-11-30</date><risdate>2019</risdate><volume>8</volume><issue>4</issue><spage>1603</spage><epage>1606</epage><pages>1603-1606</pages><issn>2277-3878</issn><eissn>2277-3878</eissn><abstract>Prediction Of Sugarcane Crop Yield Benefits The Farmer To Get Best Possible Decision Regarding Sugarcane Crop Cultivation. The Purpose Of This Work Is To Identify Possible Relationship Between N, P, K Fertilizer, Water Resource And Planting Densities. The Algorithm Used Is Multiple Regression. The Paper Focuses On The Generation Of Multiple Regression Models For The Dataset Of Sugarcane Crop For Season Adasali, Suru And Preseasonal Method. The Intercept And Slope For Variables Are Calculated And Equation For Each Model Is Generated. Sample Of N,P,K And Other Are Considered For A Period Of 7 Years From 2012 To 2018. Data Of Experimentation Is Collected For Arid Region I.E. Pandharpur, Maharashtra State.</abstract><doi>10.35940/ijrte.C4174.118419</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2277-3878
ispartof International journal of recent technology and engineering, 2019-11, Vol.8 (4), p.1603-1606
issn 2277-3878
2277-3878
language eng
recordid cdi_crossref_primary_10_35940_ijrte_C4174_118419
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title Prediction of Sugarcane Yields from Field Records using Regression Modeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T02%3A15%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20Sugarcane%20Yields%20from%20Field%20Records%20using%20Regression%20Modeling&rft.jtitle=International%20journal%20of%20recent%20technology%20and%20engineering&rft.au=Kale,%20Shivani%20S.&rft.aucorp=Assistant%20professor,%20KIT,%20Kolhapur,%20Maharashtra,%20India&rft.date=2019-11-30&rft.volume=8&rft.issue=4&rft.spage=1603&rft.epage=1606&rft.pages=1603-1606&rft.issn=2277-3878&rft.eissn=2277-3878&rft_id=info:doi/10.35940/ijrte.C4174.118419&rft_dat=%3Ccrossref%3E10_35940_ijrte_C4174_118419%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true