Tracking Of Maximum Electrical Power for a Piezoelectric Energy Harvesting System

Recent global environmental challenges have urged researchers to work on renewable energy resources. One major category of these resources is piezoelectric materials. This paper presents dynamic modeling of a piezoelectric energy harvesting system and then presents two level methodology using artifi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of recent technology and engineering 2019-09, Vol.8 (3), p.6465-6569
Hauptverfasser: Dadashzadeh, Behnam, Fekrmandi, Hadi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6569
container_issue 3
container_start_page 6465
container_title International journal of recent technology and engineering
container_volume 8
creator Dadashzadeh, Behnam
Fekrmandi, Hadi
description Recent global environmental challenges have urged researchers to work on renewable energy resources. One major category of these resources is piezoelectric materials. This paper presents dynamic modeling of a piezoelectric energy harvesting system and then presents two level methodology using artificial neural networks to reach its maximum power output. Simulation results show desirable performance of the system, which leads to output increasing and tracking of maximum power in a limited time.
doi_str_mv 10.35940/ijrte.B3492.098319
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_35940_ijrte_B3492_098319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_35940_ijrte_B3492_098319</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1599-cf9d6a95f32298638544b75e68fdc23ed6185322a037546f180303afbf7bb56d3</originalsourceid><addsrcrecordid>eNpNkMtOwzAUBS0EElXpF7DxDyTYvvFrCVWglYpaRFlHjmNXKUmD7PAIXw-kXbA6RxppFoPQNSUpcJ2Rm3ofepfeQaZZSrQCqs_QhDEpE1BSnf_7l2gW454QQkHQDMQEPW2Dsa_1YYfXHj-ar7p9b3HeONuH2poGb7pPF7DvAjZ4U7vvzp0Yzg8u7Aa8MOHDxf7P8DzE3rVX6MKbJrrZaafo5T7fzhfJav2wnN-uEku51on1uhJGcw-MaSVA8SwrJXdC-coycJWgiv8yQ0DyTHiqCBAwvvSyLLmoYIrg6LWhizE4X7yFujVhKCgpxjDFGKYYwxTHMPADlIdXtw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Tracking Of Maximum Electrical Power for a Piezoelectric Energy Harvesting System</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Dadashzadeh, Behnam ; Fekrmandi, Hadi</creator><creatorcontrib>Dadashzadeh, Behnam ; Fekrmandi, Hadi ; Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran ; Department of Mechanical Engineering, South Dakota School of Mines &amp; Technology, Rapid City, USA</creatorcontrib><description>Recent global environmental challenges have urged researchers to work on renewable energy resources. One major category of these resources is piezoelectric materials. This paper presents dynamic modeling of a piezoelectric energy harvesting system and then presents two level methodology using artificial neural networks to reach its maximum power output. Simulation results show desirable performance of the system, which leads to output increasing and tracking of maximum power in a limited time.</description><identifier>ISSN: 2277-3878</identifier><identifier>EISSN: 2277-3878</identifier><identifier>DOI: 10.35940/ijrte.B3492.098319</identifier><language>eng</language><ispartof>International journal of recent technology and engineering, 2019-09, Vol.8 (3), p.6465-6569</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids></links><search><creatorcontrib>Dadashzadeh, Behnam</creatorcontrib><creatorcontrib>Fekrmandi, Hadi</creatorcontrib><creatorcontrib>Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran</creatorcontrib><creatorcontrib>Department of Mechanical Engineering, South Dakota School of Mines &amp; Technology, Rapid City, USA</creatorcontrib><title>Tracking Of Maximum Electrical Power for a Piezoelectric Energy Harvesting System</title><title>International journal of recent technology and engineering</title><description>Recent global environmental challenges have urged researchers to work on renewable energy resources. One major category of these resources is piezoelectric materials. This paper presents dynamic modeling of a piezoelectric energy harvesting system and then presents two level methodology using artificial neural networks to reach its maximum power output. Simulation results show desirable performance of the system, which leads to output increasing and tracking of maximum power in a limited time.</description><issn>2277-3878</issn><issn>2277-3878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpNkMtOwzAUBS0EElXpF7DxDyTYvvFrCVWglYpaRFlHjmNXKUmD7PAIXw-kXbA6RxppFoPQNSUpcJ2Rm3ofepfeQaZZSrQCqs_QhDEpE1BSnf_7l2gW454QQkHQDMQEPW2Dsa_1YYfXHj-ar7p9b3HeONuH2poGb7pPF7DvAjZ4U7vvzp0Yzg8u7Aa8MOHDxf7P8DzE3rVX6MKbJrrZaafo5T7fzhfJav2wnN-uEku51on1uhJGcw-MaSVA8SwrJXdC-coycJWgiv8yQ0DyTHiqCBAwvvSyLLmoYIrg6LWhizE4X7yFujVhKCgpxjDFGKYYwxTHMPADlIdXtw</recordid><startdate>20190930</startdate><enddate>20190930</enddate><creator>Dadashzadeh, Behnam</creator><creator>Fekrmandi, Hadi</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190930</creationdate><title>Tracking Of Maximum Electrical Power for a Piezoelectric Energy Harvesting System</title><author>Dadashzadeh, Behnam ; Fekrmandi, Hadi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1599-cf9d6a95f32298638544b75e68fdc23ed6185322a037546f180303afbf7bb56d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Dadashzadeh, Behnam</creatorcontrib><creatorcontrib>Fekrmandi, Hadi</creatorcontrib><creatorcontrib>Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran</creatorcontrib><creatorcontrib>Department of Mechanical Engineering, South Dakota School of Mines &amp; Technology, Rapid City, USA</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of recent technology and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dadashzadeh, Behnam</au><au>Fekrmandi, Hadi</au><aucorp>Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran</aucorp><aucorp>Department of Mechanical Engineering, South Dakota School of Mines &amp; Technology, Rapid City, USA</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tracking Of Maximum Electrical Power for a Piezoelectric Energy Harvesting System</atitle><jtitle>International journal of recent technology and engineering</jtitle><date>2019-09-30</date><risdate>2019</risdate><volume>8</volume><issue>3</issue><spage>6465</spage><epage>6569</epage><pages>6465-6569</pages><issn>2277-3878</issn><eissn>2277-3878</eissn><abstract>Recent global environmental challenges have urged researchers to work on renewable energy resources. One major category of these resources is piezoelectric materials. This paper presents dynamic modeling of a piezoelectric energy harvesting system and then presents two level methodology using artificial neural networks to reach its maximum power output. Simulation results show desirable performance of the system, which leads to output increasing and tracking of maximum power in a limited time.</abstract><doi>10.35940/ijrte.B3492.098319</doi><tpages>105</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2277-3878
ispartof International journal of recent technology and engineering, 2019-09, Vol.8 (3), p.6465-6569
issn 2277-3878
2277-3878
language eng
recordid cdi_crossref_primary_10_35940_ijrte_B3492_098319
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title Tracking Of Maximum Electrical Power for a Piezoelectric Energy Harvesting System
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T17%3A37%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tracking%20Of%20Maximum%20Electrical%20Power%20for%20a%20Piezoelectric%20Energy%20Harvesting%20System&rft.jtitle=International%20journal%20of%20recent%20technology%20and%20engineering&rft.au=Dadashzadeh,%20Behnam&rft.aucorp=Faculty%20of%20Electrical%20and%20Computer%20Engineering,%20University%20of%20Tabriz,%20Tabriz,%20Iran&rft.date=2019-09-30&rft.volume=8&rft.issue=3&rft.spage=6465&rft.epage=6569&rft.pages=6465-6569&rft.issn=2277-3878&rft.eissn=2277-3878&rft_id=info:doi/10.35940/ijrte.B3492.098319&rft_dat=%3Ccrossref%3E10_35940_ijrte_B3492_098319%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true