Tracking Of Maximum Electrical Power for a Piezoelectric Energy Harvesting System
Recent global environmental challenges have urged researchers to work on renewable energy resources. One major category of these resources is piezoelectric materials. This paper presents dynamic modeling of a piezoelectric energy harvesting system and then presents two level methodology using artifi...
Gespeichert in:
Veröffentlicht in: | International journal of recent technology and engineering 2019-09, Vol.8 (3), p.6465-6569 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6569 |
---|---|
container_issue | 3 |
container_start_page | 6465 |
container_title | International journal of recent technology and engineering |
container_volume | 8 |
creator | Dadashzadeh, Behnam Fekrmandi, Hadi |
description | Recent global environmental challenges have urged researchers to work on renewable energy resources. One major category of these resources is piezoelectric materials. This paper presents dynamic modeling of a piezoelectric energy harvesting system and then presents two level methodology using artificial neural networks to reach its maximum power output. Simulation results show desirable performance of the system, which leads to output increasing and tracking of maximum power in a limited time. |
doi_str_mv | 10.35940/ijrte.B3492.098319 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_35940_ijrte_B3492_098319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_35940_ijrte_B3492_098319</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1599-cf9d6a95f32298638544b75e68fdc23ed6185322a037546f180303afbf7bb56d3</originalsourceid><addsrcrecordid>eNpNkMtOwzAUBS0EElXpF7DxDyTYvvFrCVWglYpaRFlHjmNXKUmD7PAIXw-kXbA6RxppFoPQNSUpcJ2Rm3ofepfeQaZZSrQCqs_QhDEpE1BSnf_7l2gW454QQkHQDMQEPW2Dsa_1YYfXHj-ar7p9b3HeONuH2poGb7pPF7DvAjZ4U7vvzp0Yzg8u7Aa8MOHDxf7P8DzE3rVX6MKbJrrZaafo5T7fzhfJav2wnN-uEku51on1uhJGcw-MaSVA8SwrJXdC-coycJWgiv8yQ0DyTHiqCBAwvvSyLLmoYIrg6LWhizE4X7yFujVhKCgpxjDFGKYYwxTHMPADlIdXtw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Tracking Of Maximum Electrical Power for a Piezoelectric Energy Harvesting System</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Dadashzadeh, Behnam ; Fekrmandi, Hadi</creator><creatorcontrib>Dadashzadeh, Behnam ; Fekrmandi, Hadi ; Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran ; Department of Mechanical Engineering, South Dakota School of Mines & Technology, Rapid City, USA</creatorcontrib><description>Recent global environmental challenges have urged researchers to work on renewable energy resources. One major category of these resources is piezoelectric materials. This paper presents dynamic modeling of a piezoelectric energy harvesting system and then presents two level methodology using artificial neural networks to reach its maximum power output. Simulation results show desirable performance of the system, which leads to output increasing and tracking of maximum power in a limited time.</description><identifier>ISSN: 2277-3878</identifier><identifier>EISSN: 2277-3878</identifier><identifier>DOI: 10.35940/ijrte.B3492.098319</identifier><language>eng</language><ispartof>International journal of recent technology and engineering, 2019-09, Vol.8 (3), p.6465-6569</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids></links><search><creatorcontrib>Dadashzadeh, Behnam</creatorcontrib><creatorcontrib>Fekrmandi, Hadi</creatorcontrib><creatorcontrib>Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran</creatorcontrib><creatorcontrib>Department of Mechanical Engineering, South Dakota School of Mines & Technology, Rapid City, USA</creatorcontrib><title>Tracking Of Maximum Electrical Power for a Piezoelectric Energy Harvesting System</title><title>International journal of recent technology and engineering</title><description>Recent global environmental challenges have urged researchers to work on renewable energy resources. One major category of these resources is piezoelectric materials. This paper presents dynamic modeling of a piezoelectric energy harvesting system and then presents two level methodology using artificial neural networks to reach its maximum power output. Simulation results show desirable performance of the system, which leads to output increasing and tracking of maximum power in a limited time.</description><issn>2277-3878</issn><issn>2277-3878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpNkMtOwzAUBS0EElXpF7DxDyTYvvFrCVWglYpaRFlHjmNXKUmD7PAIXw-kXbA6RxppFoPQNSUpcJ2Rm3ofepfeQaZZSrQCqs_QhDEpE1BSnf_7l2gW454QQkHQDMQEPW2Dsa_1YYfXHj-ar7p9b3HeONuH2poGb7pPF7DvAjZ4U7vvzp0Yzg8u7Aa8MOHDxf7P8DzE3rVX6MKbJrrZaafo5T7fzhfJav2wnN-uEku51on1uhJGcw-MaSVA8SwrJXdC-coycJWgiv8yQ0DyTHiqCBAwvvSyLLmoYIrg6LWhizE4X7yFujVhKCgpxjDFGKYYwxTHMPADlIdXtw</recordid><startdate>20190930</startdate><enddate>20190930</enddate><creator>Dadashzadeh, Behnam</creator><creator>Fekrmandi, Hadi</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190930</creationdate><title>Tracking Of Maximum Electrical Power for a Piezoelectric Energy Harvesting System</title><author>Dadashzadeh, Behnam ; Fekrmandi, Hadi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1599-cf9d6a95f32298638544b75e68fdc23ed6185322a037546f180303afbf7bb56d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Dadashzadeh, Behnam</creatorcontrib><creatorcontrib>Fekrmandi, Hadi</creatorcontrib><creatorcontrib>Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran</creatorcontrib><creatorcontrib>Department of Mechanical Engineering, South Dakota School of Mines & Technology, Rapid City, USA</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of recent technology and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dadashzadeh, Behnam</au><au>Fekrmandi, Hadi</au><aucorp>Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran</aucorp><aucorp>Department of Mechanical Engineering, South Dakota School of Mines & Technology, Rapid City, USA</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tracking Of Maximum Electrical Power for a Piezoelectric Energy Harvesting System</atitle><jtitle>International journal of recent technology and engineering</jtitle><date>2019-09-30</date><risdate>2019</risdate><volume>8</volume><issue>3</issue><spage>6465</spage><epage>6569</epage><pages>6465-6569</pages><issn>2277-3878</issn><eissn>2277-3878</eissn><abstract>Recent global environmental challenges have urged researchers to work on renewable energy resources. One major category of these resources is piezoelectric materials. This paper presents dynamic modeling of a piezoelectric energy harvesting system and then presents two level methodology using artificial neural networks to reach its maximum power output. Simulation results show desirable performance of the system, which leads to output increasing and tracking of maximum power in a limited time.</abstract><doi>10.35940/ijrte.B3492.098319</doi><tpages>105</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2277-3878 |
ispartof | International journal of recent technology and engineering, 2019-09, Vol.8 (3), p.6465-6569 |
issn | 2277-3878 2277-3878 |
language | eng |
recordid | cdi_crossref_primary_10_35940_ijrte_B3492_098319 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
title | Tracking Of Maximum Electrical Power for a Piezoelectric Energy Harvesting System |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T17%3A37%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tracking%20Of%20Maximum%20Electrical%20Power%20for%20a%20Piezoelectric%20Energy%20Harvesting%20System&rft.jtitle=International%20journal%20of%20recent%20technology%20and%20engineering&rft.au=Dadashzadeh,%20Behnam&rft.aucorp=Faculty%20of%20Electrical%20and%20Computer%20Engineering,%20University%20of%20Tabriz,%20Tabriz,%20Iran&rft.date=2019-09-30&rft.volume=8&rft.issue=3&rft.spage=6465&rft.epage=6569&rft.pages=6465-6569&rft.issn=2277-3878&rft.eissn=2277-3878&rft_id=info:doi/10.35940/ijrte.B3492.098319&rft_dat=%3Ccrossref%3E10_35940_ijrte_B3492_098319%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |