Image Classification using Supervised Convolutional Neural Network

Deep learning algorithms, in particular Convolutional Neural Networks have made notable accomplishments in many large-scale image classification tasks in the past decade. In this paper, image classification is performed using Supervised Convolutional Neural Network (SCNN). In supervised learning mod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of recent technology and engineering 2019-07, Vol.9 (2), p.4505-4507
Hauptverfasser: Sravya, Saripalli Sri, Krishna, Kalva Sri Rama, Suhasini, Pallikonda Sarah
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Deep learning algorithms, in particular Convolutional Neural Networks have made notable accomplishments in many large-scale image classification tasks in the past decade. In this paper, image classification is performed using Supervised Convolutional Neural Network (SCNN). In supervised learning model, algorithm learns on a labeled dataset. SCNN architecture is built with 15 layers viz, input layer, 9 middle layers and 5 final layers. Two datasets of different sizes are tested on SCNN framework on single CPU. With CIFAR10 dataset of 60000 images the network yielded an accuracy of 73% taking high processing time, while for 3000 images taken from MIO-TCD dataset resulted 96% accuracy with less computational time.
ISSN:2277-3878
2277-3878
DOI:10.35940/ijrte.B3486.078219