Chronic Disease Prediction using Effective Feature Selection
Healthcare is a major sector where there is demand for predictive analytics using machine learning. Healthcare will be largely benefited when useful knowledge can be transferred into timely action to manage hazardous situations in medical sector. Chronic kidney disease is a life threatening disease...
Gespeichert in:
Veröffentlicht in: | International journal of recent technology and engineering 2019-07, Vol.8 (2), p.1211-1216 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1216 |
---|---|
container_issue | 2 |
container_start_page | 1211 |
container_title | International journal of recent technology and engineering |
container_volume | 8 |
creator | Saurabh, Nikitha Nargis, Tanzila |
description | Healthcare is a major sector where there is demand for predictive analytics using machine learning. Healthcare will be largely benefited when useful knowledge can be transferred into timely action to manage hazardous situations in medical sector. Chronic kidney disease is a life threatening disease which can be prevented with timely right predictions and appropriate precautionary measures. In this paper, various machine learning classifiers are applied on the medical dataset to develop a prediction model to tell if a person's present medical condition can lead to the chronic stage of the disease in future. The higher prediction accuracy and decreased build time is obtained with reduced feature set attributes by applying Best First and Greedy stepwise algorithm combined with different classification techniques like Naive Bayes ,Support vector machine (SVM), J48, Random Forest, and K Nearest Neighbor(KNN). |
doi_str_mv | 10.35940/ijrte.B1893.078219 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_35940_ijrte_B1893_078219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_35940_ijrte_B1893_078219</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1599-c382e8d449048b33ca921e44b51d55aabce070dcd5430fa3aba0934552fd237c3</originalsourceid><addsrcrecordid>eNpN0MFKAzEUBdAgCpbaL3AzPzBjkpc0CbjRsa1CQUFdh0zyoil1RpKp4N8rUxeu3n1wuYtDyCWjDUgj6FXa5RGbW6YNNFRpzswJmXGuVA1a6dN_-ZwsStlRShksmYDljFy373nok6_uUkFXsHrKGJIf09BXh5L6t2oVI_7-X1it0Y2HjNUz7nFqXJCz6PYFF393Tl7Xq5f2vt4-bh7am23tmTSm9qA56iCEoUJ3AN4ZzlCITrIgpXOdR6po8EEKoNGB6xw1IKTkMXBQHuYEjrs-D6VkjPYzpw-Xvy2jdjKwk4GdDOzRAH4AxrRQoQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Chronic Disease Prediction using Effective Feature Selection</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Saurabh, Nikitha ; Nargis, Tanzila</creator><creatorcontrib>Saurabh, Nikitha ; Nargis, Tanzila ; Department of Information Science and Engineering, NMAMIT, Nitte, Karkala, India</creatorcontrib><description>Healthcare is a major sector where there is demand for predictive analytics using machine learning. Healthcare will be largely benefited when useful knowledge can be transferred into timely action to manage hazardous situations in medical sector. Chronic kidney disease is a life threatening disease which can be prevented with timely right predictions and appropriate precautionary measures. In this paper, various machine learning classifiers are applied on the medical dataset to develop a prediction model to tell if a person's present medical condition can lead to the chronic stage of the disease in future. The higher prediction accuracy and decreased build time is obtained with reduced feature set attributes by applying Best First and Greedy stepwise algorithm combined with different classification techniques like Naive Bayes ,Support vector machine (SVM), J48, Random Forest, and K Nearest Neighbor(KNN).</description><identifier>ISSN: 2277-3878</identifier><identifier>EISSN: 2277-3878</identifier><identifier>DOI: 10.35940/ijrte.B1893.078219</identifier><language>eng</language><ispartof>International journal of recent technology and engineering, 2019-07, Vol.8 (2), p.1211-1216</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Saurabh, Nikitha</creatorcontrib><creatorcontrib>Nargis, Tanzila</creatorcontrib><creatorcontrib>Department of Information Science and Engineering, NMAMIT, Nitte, Karkala, India</creatorcontrib><title>Chronic Disease Prediction using Effective Feature Selection</title><title>International journal of recent technology and engineering</title><description>Healthcare is a major sector where there is demand for predictive analytics using machine learning. Healthcare will be largely benefited when useful knowledge can be transferred into timely action to manage hazardous situations in medical sector. Chronic kidney disease is a life threatening disease which can be prevented with timely right predictions and appropriate precautionary measures. In this paper, various machine learning classifiers are applied on the medical dataset to develop a prediction model to tell if a person's present medical condition can lead to the chronic stage of the disease in future. The higher prediction accuracy and decreased build time is obtained with reduced feature set attributes by applying Best First and Greedy stepwise algorithm combined with different classification techniques like Naive Bayes ,Support vector machine (SVM), J48, Random Forest, and K Nearest Neighbor(KNN).</description><issn>2277-3878</issn><issn>2277-3878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpN0MFKAzEUBdAgCpbaL3AzPzBjkpc0CbjRsa1CQUFdh0zyoil1RpKp4N8rUxeu3n1wuYtDyCWjDUgj6FXa5RGbW6YNNFRpzswJmXGuVA1a6dN_-ZwsStlRShksmYDljFy373nok6_uUkFXsHrKGJIf09BXh5L6t2oVI_7-X1it0Y2HjNUz7nFqXJCz6PYFF393Tl7Xq5f2vt4-bh7am23tmTSm9qA56iCEoUJ3AN4ZzlCITrIgpXOdR6po8EEKoNGB6xw1IKTkMXBQHuYEjrs-D6VkjPYzpw-Xvy2jdjKwk4GdDOzRAH4AxrRQoQ</recordid><startdate>20190730</startdate><enddate>20190730</enddate><creator>Saurabh, Nikitha</creator><creator>Nargis, Tanzila</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190730</creationdate><title>Chronic Disease Prediction using Effective Feature Selection</title><author>Saurabh, Nikitha ; Nargis, Tanzila</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1599-c382e8d449048b33ca921e44b51d55aabce070dcd5430fa3aba0934552fd237c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Saurabh, Nikitha</creatorcontrib><creatorcontrib>Nargis, Tanzila</creatorcontrib><creatorcontrib>Department of Information Science and Engineering, NMAMIT, Nitte, Karkala, India</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of recent technology and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saurabh, Nikitha</au><au>Nargis, Tanzila</au><aucorp>Department of Information Science and Engineering, NMAMIT, Nitte, Karkala, India</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chronic Disease Prediction using Effective Feature Selection</atitle><jtitle>International journal of recent technology and engineering</jtitle><date>2019-07-30</date><risdate>2019</risdate><volume>8</volume><issue>2</issue><spage>1211</spage><epage>1216</epage><pages>1211-1216</pages><issn>2277-3878</issn><eissn>2277-3878</eissn><abstract>Healthcare is a major sector where there is demand for predictive analytics using machine learning. Healthcare will be largely benefited when useful knowledge can be transferred into timely action to manage hazardous situations in medical sector. Chronic kidney disease is a life threatening disease which can be prevented with timely right predictions and appropriate precautionary measures. In this paper, various machine learning classifiers are applied on the medical dataset to develop a prediction model to tell if a person's present medical condition can lead to the chronic stage of the disease in future. The higher prediction accuracy and decreased build time is obtained with reduced feature set attributes by applying Best First and Greedy stepwise algorithm combined with different classification techniques like Naive Bayes ,Support vector machine (SVM), J48, Random Forest, and K Nearest Neighbor(KNN).</abstract><doi>10.35940/ijrte.B1893.078219</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2277-3878 |
ispartof | International journal of recent technology and engineering, 2019-07, Vol.8 (2), p.1211-1216 |
issn | 2277-3878 2277-3878 |
language | eng |
recordid | cdi_crossref_primary_10_35940_ijrte_B1893_078219 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
title | Chronic Disease Prediction using Effective Feature Selection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T08%3A30%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chronic%20Disease%20Prediction%20using%20Effective%20Feature%20Selection&rft.jtitle=International%20journal%20of%20recent%20technology%20and%20engineering&rft.au=Saurabh,%20Nikitha&rft.aucorp=Department%20of%20Information%20Science%20and%20Engineering,%20NMAMIT,%20Nitte,%20Karkala,%20India&rft.date=2019-07-30&rft.volume=8&rft.issue=2&rft.spage=1211&rft.epage=1216&rft.pages=1211-1216&rft.issn=2277-3878&rft.eissn=2277-3878&rft_id=info:doi/10.35940/ijrte.B1893.078219&rft_dat=%3Ccrossref%3E10_35940_ijrte_B1893_078219%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |