Chronic Disease Prediction using Effective Feature Selection

Healthcare is a major sector where there is demand for predictive analytics using machine learning. Healthcare will be largely benefited when useful knowledge can be transferred into timely action to manage hazardous situations in medical sector. Chronic kidney disease is a life threatening disease...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of recent technology and engineering 2019-07, Vol.8 (2), p.1211-1216
Hauptverfasser: Saurabh, Nikitha, Nargis, Tanzila
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1216
container_issue 2
container_start_page 1211
container_title International journal of recent technology and engineering
container_volume 8
creator Saurabh, Nikitha
Nargis, Tanzila
description Healthcare is a major sector where there is demand for predictive analytics using machine learning. Healthcare will be largely benefited when useful knowledge can be transferred into timely action to manage hazardous situations in medical sector. Chronic kidney disease is a life threatening disease which can be prevented with timely right predictions and appropriate precautionary measures. In this paper, various machine learning classifiers are applied on the medical dataset to develop a prediction model to tell if a person's present medical condition can lead to the chronic stage of the disease in future. The higher prediction accuracy and decreased build time is obtained with reduced feature set attributes by applying Best First and Greedy stepwise algorithm combined with different classification techniques like Naive Bayes ,Support vector machine (SVM), J48, Random Forest, and K Nearest Neighbor(KNN).
doi_str_mv 10.35940/ijrte.B1893.078219
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_35940_ijrte_B1893_078219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_35940_ijrte_B1893_078219</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1599-c382e8d449048b33ca921e44b51d55aabce070dcd5430fa3aba0934552fd237c3</originalsourceid><addsrcrecordid>eNpN0MFKAzEUBdAgCpbaL3AzPzBjkpc0CbjRsa1CQUFdh0zyoil1RpKp4N8rUxeu3n1wuYtDyCWjDUgj6FXa5RGbW6YNNFRpzswJmXGuVA1a6dN_-ZwsStlRShksmYDljFy373nok6_uUkFXsHrKGJIf09BXh5L6t2oVI_7-X1it0Y2HjNUz7nFqXJCz6PYFF393Tl7Xq5f2vt4-bh7am23tmTSm9qA56iCEoUJ3AN4ZzlCITrIgpXOdR6po8EEKoNGB6xw1IKTkMXBQHuYEjrs-D6VkjPYzpw-Xvy2jdjKwk4GdDOzRAH4AxrRQoQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Chronic Disease Prediction using Effective Feature Selection</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Saurabh, Nikitha ; Nargis, Tanzila</creator><creatorcontrib>Saurabh, Nikitha ; Nargis, Tanzila ; Department of Information Science and Engineering, NMAMIT, Nitte, Karkala, India</creatorcontrib><description>Healthcare is a major sector where there is demand for predictive analytics using machine learning. Healthcare will be largely benefited when useful knowledge can be transferred into timely action to manage hazardous situations in medical sector. Chronic kidney disease is a life threatening disease which can be prevented with timely right predictions and appropriate precautionary measures. In this paper, various machine learning classifiers are applied on the medical dataset to develop a prediction model to tell if a person's present medical condition can lead to the chronic stage of the disease in future. The higher prediction accuracy and decreased build time is obtained with reduced feature set attributes by applying Best First and Greedy stepwise algorithm combined with different classification techniques like Naive Bayes ,Support vector machine (SVM), J48, Random Forest, and K Nearest Neighbor(KNN).</description><identifier>ISSN: 2277-3878</identifier><identifier>EISSN: 2277-3878</identifier><identifier>DOI: 10.35940/ijrte.B1893.078219</identifier><language>eng</language><ispartof>International journal of recent technology and engineering, 2019-07, Vol.8 (2), p.1211-1216</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Saurabh, Nikitha</creatorcontrib><creatorcontrib>Nargis, Tanzila</creatorcontrib><creatorcontrib>Department of Information Science and Engineering, NMAMIT, Nitte, Karkala, India</creatorcontrib><title>Chronic Disease Prediction using Effective Feature Selection</title><title>International journal of recent technology and engineering</title><description>Healthcare is a major sector where there is demand for predictive analytics using machine learning. Healthcare will be largely benefited when useful knowledge can be transferred into timely action to manage hazardous situations in medical sector. Chronic kidney disease is a life threatening disease which can be prevented with timely right predictions and appropriate precautionary measures. In this paper, various machine learning classifiers are applied on the medical dataset to develop a prediction model to tell if a person's present medical condition can lead to the chronic stage of the disease in future. The higher prediction accuracy and decreased build time is obtained with reduced feature set attributes by applying Best First and Greedy stepwise algorithm combined with different classification techniques like Naive Bayes ,Support vector machine (SVM), J48, Random Forest, and K Nearest Neighbor(KNN).</description><issn>2277-3878</issn><issn>2277-3878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpN0MFKAzEUBdAgCpbaL3AzPzBjkpc0CbjRsa1CQUFdh0zyoil1RpKp4N8rUxeu3n1wuYtDyCWjDUgj6FXa5RGbW6YNNFRpzswJmXGuVA1a6dN_-ZwsStlRShksmYDljFy373nok6_uUkFXsHrKGJIf09BXh5L6t2oVI_7-X1it0Y2HjNUz7nFqXJCz6PYFF393Tl7Xq5f2vt4-bh7am23tmTSm9qA56iCEoUJ3AN4ZzlCITrIgpXOdR6po8EEKoNGB6xw1IKTkMXBQHuYEjrs-D6VkjPYzpw-Xvy2jdjKwk4GdDOzRAH4AxrRQoQ</recordid><startdate>20190730</startdate><enddate>20190730</enddate><creator>Saurabh, Nikitha</creator><creator>Nargis, Tanzila</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190730</creationdate><title>Chronic Disease Prediction using Effective Feature Selection</title><author>Saurabh, Nikitha ; Nargis, Tanzila</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1599-c382e8d449048b33ca921e44b51d55aabce070dcd5430fa3aba0934552fd237c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Saurabh, Nikitha</creatorcontrib><creatorcontrib>Nargis, Tanzila</creatorcontrib><creatorcontrib>Department of Information Science and Engineering, NMAMIT, Nitte, Karkala, India</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of recent technology and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saurabh, Nikitha</au><au>Nargis, Tanzila</au><aucorp>Department of Information Science and Engineering, NMAMIT, Nitte, Karkala, India</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chronic Disease Prediction using Effective Feature Selection</atitle><jtitle>International journal of recent technology and engineering</jtitle><date>2019-07-30</date><risdate>2019</risdate><volume>8</volume><issue>2</issue><spage>1211</spage><epage>1216</epage><pages>1211-1216</pages><issn>2277-3878</issn><eissn>2277-3878</eissn><abstract>Healthcare is a major sector where there is demand for predictive analytics using machine learning. Healthcare will be largely benefited when useful knowledge can be transferred into timely action to manage hazardous situations in medical sector. Chronic kidney disease is a life threatening disease which can be prevented with timely right predictions and appropriate precautionary measures. In this paper, various machine learning classifiers are applied on the medical dataset to develop a prediction model to tell if a person's present medical condition can lead to the chronic stage of the disease in future. The higher prediction accuracy and decreased build time is obtained with reduced feature set attributes by applying Best First and Greedy stepwise algorithm combined with different classification techniques like Naive Bayes ,Support vector machine (SVM), J48, Random Forest, and K Nearest Neighbor(KNN).</abstract><doi>10.35940/ijrte.B1893.078219</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2277-3878
ispartof International journal of recent technology and engineering, 2019-07, Vol.8 (2), p.1211-1216
issn 2277-3878
2277-3878
language eng
recordid cdi_crossref_primary_10_35940_ijrte_B1893_078219
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title Chronic Disease Prediction using Effective Feature Selection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T08%3A30%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chronic%20Disease%20Prediction%20using%20Effective%20Feature%20Selection&rft.jtitle=International%20journal%20of%20recent%20technology%20and%20engineering&rft.au=Saurabh,%20Nikitha&rft.aucorp=Department%20of%20Information%20Science%20and%20Engineering,%20NMAMIT,%20Nitte,%20Karkala,%20India&rft.date=2019-07-30&rft.volume=8&rft.issue=2&rft.spage=1211&rft.epage=1216&rft.pages=1211-1216&rft.issn=2277-3878&rft.eissn=2277-3878&rft_id=info:doi/10.35940/ijrte.B1893.078219&rft_dat=%3Ccrossref%3E10_35940_ijrte_B1893_078219%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true