A Neural Network Model for the Compressive Strength of a Hybrid LM6 Aluminium Alloy Composite
Adding more than one reinforcement increases the flexibility in composites. The objective of the work is to develop a model to predict the compressive strength in an LM6 aluminium alloy reinforced with SiC and flyash particles. Central composite rotatable design had been employed to carry out the ex...
Gespeichert in:
Veröffentlicht in: | International journal of recent technology and engineering 2019-09, Vol.8 (2S8), p.1652-1654 |
---|---|
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1654 |
---|---|
container_issue | 2S8 |
container_start_page | 1652 |
container_title | International journal of recent technology and engineering |
container_volume | 8 |
description | Adding more than one reinforcement increases the flexibility in composites. The objective of the work is to develop a model to predict the compressive strength in an LM6 aluminium alloy reinforced with SiC and flyash particles. Central composite rotatable design had been employed to carry out the experiments with size and composition of the reinforcements as the parameters. ANN model developed has good prediction accuracy with error being less than 5%. |
doi_str_mv | 10.35940/ijrte.B1123.0882S819 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_35940_ijrte_B1123_0882S819</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_35940_ijrte_B1123_0882S819</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1639-521993d89628d64fb467c6b6c1933849a10302c5c68fac235b396c7cc351ca273</originalsourceid><addsrcrecordid>eNpNkNFOgzAYRhujicvcI5j0BcC2P5T2Eok6E6YX00tDSimuE9alBQ1v74KaeHXOzfddHISuKYkhlQm5sXs_mPiWUgYxEYJtBZVnaMFYlkUgMnH-zy_RKoQ9IYQCpwnwBXrL8ZMZvepOGL6c_8Ab15gOt87jYWdw4fqjNyHYT4O3gzeH92GHXYsVXk-1tw0uNxzn3djbgx37k3Vumkcu2MFcoYtWdcGsfrlEr_d3L8U6Kp8fHou8jDTlIKOUUSmhEZIz0fCkrROeaV5zTSWASKSiBAjTqeaiVZpBWoPkOtMaUqoVy2CJ0p9f7V0I3rTV0dte-amipJozVXOmas5U_WWCb-QFW78</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Neural Network Model for the Compressive Strength of a Hybrid LM6 Aluminium Alloy Composite</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><description>Adding more than one reinforcement increases the flexibility in composites. The objective of the work is to develop a model to predict the compressive strength in an LM6 aluminium alloy reinforced with SiC and flyash particles. Central composite rotatable design had been employed to carry out the experiments with size and composition of the reinforcements as the parameters. ANN model developed has good prediction accuracy with error being less than 5%.</description><identifier>ISSN: 2277-3878</identifier><identifier>EISSN: 2277-3878</identifier><identifier>DOI: 10.35940/ijrte.B1123.0882S819</identifier><language>eng</language><ispartof>International journal of recent technology and engineering, 2019-09, Vol.8 (2S8), p.1652-1654</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><title>A Neural Network Model for the Compressive Strength of a Hybrid LM6 Aluminium Alloy Composite</title><title>International journal of recent technology and engineering</title><description>Adding more than one reinforcement increases the flexibility in composites. The objective of the work is to develop a model to predict the compressive strength in an LM6 aluminium alloy reinforced with SiC and flyash particles. Central composite rotatable design had been employed to carry out the experiments with size and composition of the reinforcements as the parameters. ANN model developed has good prediction accuracy with error being less than 5%.</description><issn>2277-3878</issn><issn>2277-3878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpNkNFOgzAYRhujicvcI5j0BcC2P5T2Eok6E6YX00tDSimuE9alBQ1v74KaeHXOzfddHISuKYkhlQm5sXs_mPiWUgYxEYJtBZVnaMFYlkUgMnH-zy_RKoQ9IYQCpwnwBXrL8ZMZvepOGL6c_8Ab15gOt87jYWdw4fqjNyHYT4O3gzeH92GHXYsVXk-1tw0uNxzn3djbgx37k3Vumkcu2MFcoYtWdcGsfrlEr_d3L8U6Kp8fHou8jDTlIKOUUSmhEZIz0fCkrROeaV5zTSWASKSiBAjTqeaiVZpBWoPkOtMaUqoVy2CJ0p9f7V0I3rTV0dte-amipJozVXOmas5U_WWCb-QFW78</recordid><startdate>20190917</startdate><enddate>20190917</enddate><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190917</creationdate><title>A Neural Network Model for the Compressive Strength of a Hybrid LM6 Aluminium Alloy Composite</title></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1639-521993d89628d64fb467c6b6c1933849a10302c5c68fac235b396c7cc351ca273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>online_resources</toplevel><collection>CrossRef</collection><jtitle>International journal of recent technology and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Neural Network Model for the Compressive Strength of a Hybrid LM6 Aluminium Alloy Composite</atitle><jtitle>International journal of recent technology and engineering</jtitle><date>2019-09-17</date><risdate>2019</risdate><volume>8</volume><issue>2S8</issue><spage>1652</spage><epage>1654</epage><pages>1652-1654</pages><issn>2277-3878</issn><eissn>2277-3878</eissn><abstract>Adding more than one reinforcement increases the flexibility in composites. The objective of the work is to develop a model to predict the compressive strength in an LM6 aluminium alloy reinforced with SiC and flyash particles. Central composite rotatable design had been employed to carry out the experiments with size and composition of the reinforcements as the parameters. ANN model developed has good prediction accuracy with error being less than 5%.</abstract><doi>10.35940/ijrte.B1123.0882S819</doi><tpages>3</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2277-3878 |
ispartof | International journal of recent technology and engineering, 2019-09, Vol.8 (2S8), p.1652-1654 |
issn | 2277-3878 2277-3878 |
language | eng |
recordid | cdi_crossref_primary_10_35940_ijrte_B1123_0882S819 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
title | A Neural Network Model for the Compressive Strength of a Hybrid LM6 Aluminium Alloy Composite |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T22%3A16%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Neural%20Network%20Model%20for%20the%20Compressive%20Strength%20of%20a%20Hybrid%20LM6%20Aluminium%20Alloy%20Composite&rft.jtitle=International%20journal%20of%20recent%20technology%20and%20engineering&rft.date=2019-09-17&rft.volume=8&rft.issue=2S8&rft.spage=1652&rft.epage=1654&rft.pages=1652-1654&rft.issn=2277-3878&rft.eissn=2277-3878&rft_id=info:doi/10.35940/ijrte.B1123.0882S819&rft_dat=%3Ccrossref%3E10_35940_ijrte_B1123_0882S819%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |