A Neural Network Model for the Compressive Strength of a Hybrid LM6 Aluminium Alloy Composite

Adding more than one reinforcement increases the flexibility in composites. The objective of the work is to develop a model to predict the compressive strength in an LM6 aluminium alloy reinforced with SiC and flyash particles. Central composite rotatable design had been employed to carry out the ex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of recent technology and engineering 2019-09, Vol.8 (2S8), p.1652-1654
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1654
container_issue 2S8
container_start_page 1652
container_title International journal of recent technology and engineering
container_volume 8
description Adding more than one reinforcement increases the flexibility in composites. The objective of the work is to develop a model to predict the compressive strength in an LM6 aluminium alloy reinforced with SiC and flyash particles. Central composite rotatable design had been employed to carry out the experiments with size and composition of the reinforcements as the parameters. ANN model developed has good prediction accuracy with error being less than 5%.
doi_str_mv 10.35940/ijrte.B1123.0882S819
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_35940_ijrte_B1123_0882S819</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_35940_ijrte_B1123_0882S819</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1639-521993d89628d64fb467c6b6c1933849a10302c5c68fac235b396c7cc351ca273</originalsourceid><addsrcrecordid>eNpNkNFOgzAYRhujicvcI5j0BcC2P5T2Eok6E6YX00tDSimuE9alBQ1v74KaeHXOzfddHISuKYkhlQm5sXs_mPiWUgYxEYJtBZVnaMFYlkUgMnH-zy_RKoQ9IYQCpwnwBXrL8ZMZvepOGL6c_8Ab15gOt87jYWdw4fqjNyHYT4O3gzeH92GHXYsVXk-1tw0uNxzn3djbgx37k3Vumkcu2MFcoYtWdcGsfrlEr_d3L8U6Kp8fHou8jDTlIKOUUSmhEZIz0fCkrROeaV5zTSWASKSiBAjTqeaiVZpBWoPkOtMaUqoVy2CJ0p9f7V0I3rTV0dte-amipJozVXOmas5U_WWCb-QFW78</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Neural Network Model for the Compressive Strength of a Hybrid LM6 Aluminium Alloy Composite</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><description>Adding more than one reinforcement increases the flexibility in composites. The objective of the work is to develop a model to predict the compressive strength in an LM6 aluminium alloy reinforced with SiC and flyash particles. Central composite rotatable design had been employed to carry out the experiments with size and composition of the reinforcements as the parameters. ANN model developed has good prediction accuracy with error being less than 5%.</description><identifier>ISSN: 2277-3878</identifier><identifier>EISSN: 2277-3878</identifier><identifier>DOI: 10.35940/ijrte.B1123.0882S819</identifier><language>eng</language><ispartof>International journal of recent technology and engineering, 2019-09, Vol.8 (2S8), p.1652-1654</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><title>A Neural Network Model for the Compressive Strength of a Hybrid LM6 Aluminium Alloy Composite</title><title>International journal of recent technology and engineering</title><description>Adding more than one reinforcement increases the flexibility in composites. The objective of the work is to develop a model to predict the compressive strength in an LM6 aluminium alloy reinforced with SiC and flyash particles. Central composite rotatable design had been employed to carry out the experiments with size and composition of the reinforcements as the parameters. ANN model developed has good prediction accuracy with error being less than 5%.</description><issn>2277-3878</issn><issn>2277-3878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpNkNFOgzAYRhujicvcI5j0BcC2P5T2Eok6E6YX00tDSimuE9alBQ1v74KaeHXOzfddHISuKYkhlQm5sXs_mPiWUgYxEYJtBZVnaMFYlkUgMnH-zy_RKoQ9IYQCpwnwBXrL8ZMZvepOGL6c_8Ab15gOt87jYWdw4fqjNyHYT4O3gzeH92GHXYsVXk-1tw0uNxzn3djbgx37k3Vumkcu2MFcoYtWdcGsfrlEr_d3L8U6Kp8fHou8jDTlIKOUUSmhEZIz0fCkrROeaV5zTSWASKSiBAjTqeaiVZpBWoPkOtMaUqoVy2CJ0p9f7V0I3rTV0dte-amipJozVXOmas5U_WWCb-QFW78</recordid><startdate>20190917</startdate><enddate>20190917</enddate><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190917</creationdate><title>A Neural Network Model for the Compressive Strength of a Hybrid LM6 Aluminium Alloy Composite</title></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1639-521993d89628d64fb467c6b6c1933849a10302c5c68fac235b396c7cc351ca273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>online_resources</toplevel><collection>CrossRef</collection><jtitle>International journal of recent technology and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Neural Network Model for the Compressive Strength of a Hybrid LM6 Aluminium Alloy Composite</atitle><jtitle>International journal of recent technology and engineering</jtitle><date>2019-09-17</date><risdate>2019</risdate><volume>8</volume><issue>2S8</issue><spage>1652</spage><epage>1654</epage><pages>1652-1654</pages><issn>2277-3878</issn><eissn>2277-3878</eissn><abstract>Adding more than one reinforcement increases the flexibility in composites. The objective of the work is to develop a model to predict the compressive strength in an LM6 aluminium alloy reinforced with SiC and flyash particles. Central composite rotatable design had been employed to carry out the experiments with size and composition of the reinforcements as the parameters. ANN model developed has good prediction accuracy with error being less than 5%.</abstract><doi>10.35940/ijrte.B1123.0882S819</doi><tpages>3</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2277-3878
ispartof International journal of recent technology and engineering, 2019-09, Vol.8 (2S8), p.1652-1654
issn 2277-3878
2277-3878
language eng
recordid cdi_crossref_primary_10_35940_ijrte_B1123_0882S819
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title A Neural Network Model for the Compressive Strength of a Hybrid LM6 Aluminium Alloy Composite
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T22%3A16%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Neural%20Network%20Model%20for%20the%20Compressive%20Strength%20of%20a%20Hybrid%20LM6%20Aluminium%20Alloy%20Composite&rft.jtitle=International%20journal%20of%20recent%20technology%20and%20engineering&rft.date=2019-09-17&rft.volume=8&rft.issue=2S8&rft.spage=1652&rft.epage=1654&rft.pages=1652-1654&rft.issn=2277-3878&rft.eissn=2277-3878&rft_id=info:doi/10.35940/ijrte.B1123.0882S819&rft_dat=%3Ccrossref%3E10_35940_ijrte_B1123_0882S819%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true