Link Prediction in Social Networks using Vertex Entropy

Many link prediction methods have been put out and tested on several actual networks. The weights of linkages are rarely considered in these studies. Taking both the network's structure and link weight into account is required for link prediction. Previous researchers mostly overlooked the topo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of recent technology and engineering 2023-07, Vol.12 (2), p.102-108
Hauptverfasser: Shubham, Kumar, Dr. Rajeev, Chauhan, Dr. Naveen
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 108
container_issue 2
container_start_page 102
container_title International journal of recent technology and engineering
container_volume 12
creator Shubham
Kumar, Dr. Rajeev
Chauhan, Dr. Naveen
description Many link prediction methods have been put out and tested on several actual networks. The weights of linkages are rarely considered in these studies. Taking both the network's structure and link weight into account is required for link prediction. Previous researchers mostly overlooked the topological structure data in favour of the naturally occurring link weight. With the use of the concept of entropy, a new link prediction algorithm has been put forth in this paper.When used in real-time social networks, this algorithm outperforms the industry standard techniques. This paper concentrated on both topological structural information which focuses on calculating the vertex entropy of each very vertex and link weight in the proposed method. Both weighted and unweighted networks can benefit from the proposed method. Unipartite and bipartite networks can also use the suggested methods. Further, results demonstrate that the proposed method performs better than competing or traditional strategies, particularly when targeted social networks are sufficiently dense.
doi_str_mv 10.35940/ijrte.A7593.0712223
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_35940_ijrte_A7593_0712223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_35940_ijrte_A7593_0712223</sourcerecordid><originalsourceid>FETCH-LOGICAL-c913-223b0e1feca28a374c3aa9073b55c6daa80214acb8446b875f031f6c0bcde0c3</originalsourceid><addsrcrecordid>eNpNz01OwzAQBWALgURVegMWvkDC2OPEzrKqyo8UAVIRW8uZOMhtSSo7CHp7qtAFq3mree9j7FZAjkWl4C5s4-jzpS4qzEELKSVesJmUWmdotLn8l6_ZIqUtAAgshcJyxnQd-h1_jb4NNIah56Hnm4GC2_NnP34PcZf4Vwr9B3_3p5ofvu7HOByON-yqc_vkF-c7Z5v79dvqMatfHp5WyzqjSmB2mtKAF50nJ41DrQidq0BjUxRUts4ZkEI5aoxSZWN00QGKriRoqPVAOGfq7yvFIaXoO3uI4dPFoxVgJ72d9HbS27MefwHw9U74</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Link Prediction in Social Networks using Vertex Entropy</title><source>EZB Electronic Journals Library</source><creator>Shubham ; Kumar, Dr. Rajeev ; Chauhan, Dr. Naveen</creator><creatorcontrib>Shubham ; Kumar, Dr. Rajeev ; Chauhan, Dr. Naveen ; Department of Computer Science and Engineering, NIT Hamirpur, Hamirpur, (Himachal Pradesh), India</creatorcontrib><description>Many link prediction methods have been put out and tested on several actual networks. The weights of linkages are rarely considered in these studies. Taking both the network's structure and link weight into account is required for link prediction. Previous researchers mostly overlooked the topological structure data in favour of the naturally occurring link weight. With the use of the concept of entropy, a new link prediction algorithm has been put forth in this paper.When used in real-time social networks, this algorithm outperforms the industry standard techniques. This paper concentrated on both topological structural information which focuses on calculating the vertex entropy of each very vertex and link weight in the proposed method. Both weighted and unweighted networks can benefit from the proposed method. Unipartite and bipartite networks can also use the suggested methods. Further, results demonstrate that the proposed method performs better than competing or traditional strategies, particularly when targeted social networks are sufficiently dense.</description><identifier>ISSN: 2277-3878</identifier><identifier>EISSN: 2277-3878</identifier><identifier>DOI: 10.35940/ijrte.A7593.0712223</identifier><language>eng</language><ispartof>International journal of recent technology and engineering, 2023-07, Vol.12 (2), p.102-108</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c913-223b0e1feca28a374c3aa9073b55c6daa80214acb8446b875f031f6c0bcde0c3</cites><orcidid>0000-0001-9347-9345 ; 0000-0001-6134-5369 ; 0009-0009-0021-3579</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27926,27927</link.rule.ids></links><search><creatorcontrib>Shubham</creatorcontrib><creatorcontrib>Kumar, Dr. Rajeev</creatorcontrib><creatorcontrib>Chauhan, Dr. Naveen</creatorcontrib><creatorcontrib>Department of Computer Science and Engineering, NIT Hamirpur, Hamirpur, (Himachal Pradesh), India</creatorcontrib><title>Link Prediction in Social Networks using Vertex Entropy</title><title>International journal of recent technology and engineering</title><description>Many link prediction methods have been put out and tested on several actual networks. The weights of linkages are rarely considered in these studies. Taking both the network's structure and link weight into account is required for link prediction. Previous researchers mostly overlooked the topological structure data in favour of the naturally occurring link weight. With the use of the concept of entropy, a new link prediction algorithm has been put forth in this paper.When used in real-time social networks, this algorithm outperforms the industry standard techniques. This paper concentrated on both topological structural information which focuses on calculating the vertex entropy of each very vertex and link weight in the proposed method. Both weighted and unweighted networks can benefit from the proposed method. Unipartite and bipartite networks can also use the suggested methods. Further, results demonstrate that the proposed method performs better than competing or traditional strategies, particularly when targeted social networks are sufficiently dense.</description><issn>2277-3878</issn><issn>2277-3878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNz01OwzAQBWALgURVegMWvkDC2OPEzrKqyo8UAVIRW8uZOMhtSSo7CHp7qtAFq3mree9j7FZAjkWl4C5s4-jzpS4qzEELKSVesJmUWmdotLn8l6_ZIqUtAAgshcJyxnQd-h1_jb4NNIah56Hnm4GC2_NnP34PcZf4Vwr9B3_3p5ofvu7HOByON-yqc_vkF-c7Z5v79dvqMatfHp5WyzqjSmB2mtKAF50nJ41DrQidq0BjUxRUts4ZkEI5aoxSZWN00QGKriRoqPVAOGfq7yvFIaXoO3uI4dPFoxVgJ72d9HbS27MefwHw9U74</recordid><startdate>20230730</startdate><enddate>20230730</enddate><creator>Shubham</creator><creator>Kumar, Dr. Rajeev</creator><creator>Chauhan, Dr. Naveen</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9347-9345</orcidid><orcidid>https://orcid.org/0000-0001-6134-5369</orcidid><orcidid>https://orcid.org/0009-0009-0021-3579</orcidid></search><sort><creationdate>20230730</creationdate><title>Link Prediction in Social Networks using Vertex Entropy</title><author>Shubham ; Kumar, Dr. Rajeev ; Chauhan, Dr. Naveen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c913-223b0e1feca28a374c3aa9073b55c6daa80214acb8446b875f031f6c0bcde0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Shubham</creatorcontrib><creatorcontrib>Kumar, Dr. Rajeev</creatorcontrib><creatorcontrib>Chauhan, Dr. Naveen</creatorcontrib><creatorcontrib>Department of Computer Science and Engineering, NIT Hamirpur, Hamirpur, (Himachal Pradesh), India</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of recent technology and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shubham</au><au>Kumar, Dr. Rajeev</au><au>Chauhan, Dr. Naveen</au><aucorp>Department of Computer Science and Engineering, NIT Hamirpur, Hamirpur, (Himachal Pradesh), India</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Link Prediction in Social Networks using Vertex Entropy</atitle><jtitle>International journal of recent technology and engineering</jtitle><date>2023-07-30</date><risdate>2023</risdate><volume>12</volume><issue>2</issue><spage>102</spage><epage>108</epage><pages>102-108</pages><issn>2277-3878</issn><eissn>2277-3878</eissn><abstract>Many link prediction methods have been put out and tested on several actual networks. The weights of linkages are rarely considered in these studies. Taking both the network's structure and link weight into account is required for link prediction. Previous researchers mostly overlooked the topological structure data in favour of the naturally occurring link weight. With the use of the concept of entropy, a new link prediction algorithm has been put forth in this paper.When used in real-time social networks, this algorithm outperforms the industry standard techniques. This paper concentrated on both topological structural information which focuses on calculating the vertex entropy of each very vertex and link weight in the proposed method. Both weighted and unweighted networks can benefit from the proposed method. Unipartite and bipartite networks can also use the suggested methods. Further, results demonstrate that the proposed method performs better than competing or traditional strategies, particularly when targeted social networks are sufficiently dense.</abstract><doi>10.35940/ijrte.A7593.0712223</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-9347-9345</orcidid><orcidid>https://orcid.org/0000-0001-6134-5369</orcidid><orcidid>https://orcid.org/0009-0009-0021-3579</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2277-3878
ispartof International journal of recent technology and engineering, 2023-07, Vol.12 (2), p.102-108
issn 2277-3878
2277-3878
language eng
recordid cdi_crossref_primary_10_35940_ijrte_A7593_0712223
source EZB Electronic Journals Library
title Link Prediction in Social Networks using Vertex Entropy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T22%3A44%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Link%20Prediction%20in%20Social%20Networks%20using%20Vertex%20Entropy&rft.jtitle=International%20journal%20of%20recent%20technology%20and%20engineering&rft.au=Shubham&rft.aucorp=Department%20of%20Computer%20Science%20and%20Engineering,%20NIT%20Hamirpur,%20Hamirpur,%20(Himachal%20Pradesh),%20India&rft.date=2023-07-30&rft.volume=12&rft.issue=2&rft.spage=102&rft.epage=108&rft.pages=102-108&rft.issn=2277-3878&rft.eissn=2277-3878&rft_id=info:doi/10.35940/ijrte.A7593.0712223&rft_dat=%3Ccrossref%3E10_35940_ijrte_A7593_0712223%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true