Isolated Telugu Speech Recognition On T-DSCC And DNN Techniques
Communication is the major path to convey the information. Speech is the best mode for conveying the information. Human to human information can be exchanged through some particular language. But the interaction between human and machine is the major challenge which deals with ASR (Automatic speech...
Gespeichert in:
Veröffentlicht in: | International journal of innovative technology and exploring engineering 2019-09, Vol.8 (11), p.3419-3422 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3422 |
---|---|
container_issue | 11 |
container_start_page | 3419 |
container_title | International journal of innovative technology and exploring engineering |
container_volume | 8 |
creator | Kumar, Dr. Archek Praveen Maheshwari, Neerudu Uma Sangeetha, Y. Jyothi, P. |
description | Communication is the major path to convey the information. Speech is the best mode for conveying the information. Human to human information can be exchanged through some particular language. But the interaction between human and machine is the major challenge which deals with ASR (Automatic speech recognition). This research recognizes speaker independent data which gives good results by using T-DSCC (Teager energy operator delta spectral cepstral coefficients) feature extraction technique and DNN (Deep Neural Networks) feature classification technique. This paper also uses CASA technique for pre-processing the speech signals. This research is done by creating the database for 10 most speak able isolated words in Telugu. |
doi_str_mv | 10.35940/ijitee.K2544.0981119 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_35940_ijitee_K2544_0981119</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_35940_ijitee_K2544_0981119</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1639-1fea5bef211b9685b6fc47b0590550b172b4af2e0fa61338493d8ef2a1393f33</originalsourceid><addsrcrecordid>eNpN0M1OwkAUBeCJ0USCPILJvEDr3PlpOytDigqRQCLdT2baO1BSW-y0C99eAixcnbM4OYuPkGdgsVBaspf6WA-I8SdXUsZMZwCg78iE8zSLBEvV_b_-SGYhHBljICRkiZ6Q11XoGjtgRQtsxv1IdyfE8kC_sOz2bT3UXUu3LS2ixS7P6byt6GKzOW_LQ1v_jBieyIO3TcDZLaekeH8r8mW03n6s8vk6KiEROgKPVjn0HMDpJFMu8aVMHVOaKcUcpNxJ6zkybxMQIpNaVNl5bkFo4YWYEnW9LfsuhB69OfX1t-1_DTBzcTBXB3NxMDcH8QepSFCl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Isolated Telugu Speech Recognition On T-DSCC And DNN Techniques</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kumar, Dr. Archek Praveen ; Maheshwari, Neerudu Uma ; Sangeetha, Y. ; Jyothi, P.</creator><creatorcontrib>Kumar, Dr. Archek Praveen ; Maheshwari, Neerudu Uma ; Sangeetha, Y. ; Jyothi, P. ; Associate Professor, Department of ECE, Malla Reddy College of Engineering for Women, Hyderabad, Telangana, India ; Professor, HOD, Department of ECE, Malla Reddy College of Engineering for Women, Hyderabad, Telangana, India ; Assistant Professor, Department of ECE, Malla Reddy College of Engineering for Women, Hyderabad, Telangana, India</creatorcontrib><description>Communication is the major path to convey the information. Speech is the best mode for conveying the information. Human to human information can be exchanged through some particular language. But the interaction between human and machine is the major challenge which deals with ASR (Automatic speech recognition). This research recognizes speaker independent data which gives good results by using T-DSCC (Teager energy operator delta spectral cepstral coefficients) feature extraction technique and DNN (Deep Neural Networks) feature classification technique. This paper also uses CASA technique for pre-processing the speech signals. This research is done by creating the database for 10 most speak able isolated words in Telugu.</description><identifier>ISSN: 2278-3075</identifier><identifier>EISSN: 2278-3075</identifier><identifier>DOI: 10.35940/ijitee.K2544.0981119</identifier><language>eng</language><ispartof>International journal of innovative technology and exploring engineering, 2019-09, Vol.8 (11), p.3419-3422</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Kumar, Dr. Archek Praveen</creatorcontrib><creatorcontrib>Maheshwari, Neerudu Uma</creatorcontrib><creatorcontrib>Sangeetha, Y.</creatorcontrib><creatorcontrib>Jyothi, P.</creatorcontrib><creatorcontrib>Associate Professor, Department of ECE, Malla Reddy College of Engineering for Women, Hyderabad, Telangana, India</creatorcontrib><creatorcontrib>Professor, HOD, Department of ECE, Malla Reddy College of Engineering for Women, Hyderabad, Telangana, India</creatorcontrib><creatorcontrib>Assistant Professor, Department of ECE, Malla Reddy College of Engineering for Women, Hyderabad, Telangana, India</creatorcontrib><title>Isolated Telugu Speech Recognition On T-DSCC And DNN Techniques</title><title>International journal of innovative technology and exploring engineering</title><description>Communication is the major path to convey the information. Speech is the best mode for conveying the information. Human to human information can be exchanged through some particular language. But the interaction between human and machine is the major challenge which deals with ASR (Automatic speech recognition). This research recognizes speaker independent data which gives good results by using T-DSCC (Teager energy operator delta spectral cepstral coefficients) feature extraction technique and DNN (Deep Neural Networks) feature classification technique. This paper also uses CASA technique for pre-processing the speech signals. This research is done by creating the database for 10 most speak able isolated words in Telugu.</description><issn>2278-3075</issn><issn>2278-3075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpN0M1OwkAUBeCJ0USCPILJvEDr3PlpOytDigqRQCLdT2baO1BSW-y0C99eAixcnbM4OYuPkGdgsVBaspf6WA-I8SdXUsZMZwCg78iE8zSLBEvV_b_-SGYhHBljICRkiZ6Q11XoGjtgRQtsxv1IdyfE8kC_sOz2bT3UXUu3LS2ixS7P6byt6GKzOW_LQ1v_jBieyIO3TcDZLaekeH8r8mW03n6s8vk6KiEROgKPVjn0HMDpJFMu8aVMHVOaKcUcpNxJ6zkybxMQIpNaVNl5bkFo4YWYEnW9LfsuhB69OfX1t-1_DTBzcTBXB3NxMDcH8QepSFCl</recordid><startdate>20190930</startdate><enddate>20190930</enddate><creator>Kumar, Dr. Archek Praveen</creator><creator>Maheshwari, Neerudu Uma</creator><creator>Sangeetha, Y.</creator><creator>Jyothi, P.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190930</creationdate><title>Isolated Telugu Speech Recognition On T-DSCC And DNN Techniques</title><author>Kumar, Dr. Archek Praveen ; Maheshwari, Neerudu Uma ; Sangeetha, Y. ; Jyothi, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1639-1fea5bef211b9685b6fc47b0590550b172b4af2e0fa61338493d8ef2a1393f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Dr. Archek Praveen</creatorcontrib><creatorcontrib>Maheshwari, Neerudu Uma</creatorcontrib><creatorcontrib>Sangeetha, Y.</creatorcontrib><creatorcontrib>Jyothi, P.</creatorcontrib><creatorcontrib>Associate Professor, Department of ECE, Malla Reddy College of Engineering for Women, Hyderabad, Telangana, India</creatorcontrib><creatorcontrib>Professor, HOD, Department of ECE, Malla Reddy College of Engineering for Women, Hyderabad, Telangana, India</creatorcontrib><creatorcontrib>Assistant Professor, Department of ECE, Malla Reddy College of Engineering for Women, Hyderabad, Telangana, India</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of innovative technology and exploring engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Dr. Archek Praveen</au><au>Maheshwari, Neerudu Uma</au><au>Sangeetha, Y.</au><au>Jyothi, P.</au><aucorp>Associate Professor, Department of ECE, Malla Reddy College of Engineering for Women, Hyderabad, Telangana, India</aucorp><aucorp>Professor, HOD, Department of ECE, Malla Reddy College of Engineering for Women, Hyderabad, Telangana, India</aucorp><aucorp>Assistant Professor, Department of ECE, Malla Reddy College of Engineering for Women, Hyderabad, Telangana, India</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Isolated Telugu Speech Recognition On T-DSCC And DNN Techniques</atitle><jtitle>International journal of innovative technology and exploring engineering</jtitle><date>2019-09-30</date><risdate>2019</risdate><volume>8</volume><issue>11</issue><spage>3419</spage><epage>3422</epage><pages>3419-3422</pages><issn>2278-3075</issn><eissn>2278-3075</eissn><abstract>Communication is the major path to convey the information. Speech is the best mode for conveying the information. Human to human information can be exchanged through some particular language. But the interaction between human and machine is the major challenge which deals with ASR (Automatic speech recognition). This research recognizes speaker independent data which gives good results by using T-DSCC (Teager energy operator delta spectral cepstral coefficients) feature extraction technique and DNN (Deep Neural Networks) feature classification technique. This paper also uses CASA technique for pre-processing the speech signals. This research is done by creating the database for 10 most speak able isolated words in Telugu.</abstract><doi>10.35940/ijitee.K2544.0981119</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2278-3075 |
ispartof | International journal of innovative technology and exploring engineering, 2019-09, Vol.8 (11), p.3419-3422 |
issn | 2278-3075 2278-3075 |
language | eng |
recordid | cdi_crossref_primary_10_35940_ijitee_K2544_0981119 |
source | EZB-FREE-00999 freely available EZB journals |
title | Isolated Telugu Speech Recognition On T-DSCC And DNN Techniques |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T14%3A38%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Isolated%20Telugu%20Speech%20Recognition%20On%20T-DSCC%20And%20DNN%20Techniques&rft.jtitle=International%20journal%20of%20innovative%20technology%20and%20exploring%20engineering&rft.au=Kumar,%20Dr.%20Archek%20Praveen&rft.aucorp=Associate%20Professor,%20Department%20of%20ECE,%20Malla%20Reddy%20College%20of%20Engineering%20for%20Women,%20Hyderabad,%20Telangana,%20India&rft.date=2019-09-30&rft.volume=8&rft.issue=11&rft.spage=3419&rft.epage=3422&rft.pages=3419-3422&rft.issn=2278-3075&rft.eissn=2278-3075&rft_id=info:doi/10.35940/ijitee.K2544.0981119&rft_dat=%3Ccrossref%3E10_35940_ijitee_K2544_0981119%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |