Isolated Telugu Speech Recognition On T-DSCC And DNN Techniques

Communication is the major path to convey the information. Speech is the best mode for conveying the information. Human to human information can be exchanged through some particular language. But the interaction between human and machine is the major challenge which deals with ASR (Automatic speech...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of innovative technology and exploring engineering 2019-09, Vol.8 (11), p.3419-3422
Hauptverfasser: Kumar, Dr. Archek Praveen, Maheshwari, Neerudu Uma, Sangeetha, Y., Jyothi, P.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3422
container_issue 11
container_start_page 3419
container_title International journal of innovative technology and exploring engineering
container_volume 8
creator Kumar, Dr. Archek Praveen
Maheshwari, Neerudu Uma
Sangeetha, Y.
Jyothi, P.
description Communication is the major path to convey the information. Speech is the best mode for conveying the information. Human to human information can be exchanged through some particular language. But the interaction between human and machine is the major challenge which deals with ASR (Automatic speech recognition). This research recognizes speaker independent data which gives good results by using T-DSCC (Teager energy operator delta spectral cepstral coefficients) feature extraction technique and DNN (Deep Neural Networks) feature classification technique. This paper also uses CASA technique for pre-processing the speech signals. This research is done by creating the database for 10 most speak able isolated words in Telugu.
doi_str_mv 10.35940/ijitee.K2544.0981119
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_35940_ijitee_K2544_0981119</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_35940_ijitee_K2544_0981119</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1639-1fea5bef211b9685b6fc47b0590550b172b4af2e0fa61338493d8ef2a1393f33</originalsourceid><addsrcrecordid>eNpN0M1OwkAUBeCJ0USCPILJvEDr3PlpOytDigqRQCLdT2baO1BSW-y0C99eAixcnbM4OYuPkGdgsVBaspf6WA-I8SdXUsZMZwCg78iE8zSLBEvV_b_-SGYhHBljICRkiZ6Q11XoGjtgRQtsxv1IdyfE8kC_sOz2bT3UXUu3LS2ixS7P6byt6GKzOW_LQ1v_jBieyIO3TcDZLaekeH8r8mW03n6s8vk6KiEROgKPVjn0HMDpJFMu8aVMHVOaKcUcpNxJ6zkybxMQIpNaVNl5bkFo4YWYEnW9LfsuhB69OfX1t-1_DTBzcTBXB3NxMDcH8QepSFCl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Isolated Telugu Speech Recognition On T-DSCC And DNN Techniques</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kumar, Dr. Archek Praveen ; Maheshwari, Neerudu Uma ; Sangeetha, Y. ; Jyothi, P.</creator><creatorcontrib>Kumar, Dr. Archek Praveen ; Maheshwari, Neerudu Uma ; Sangeetha, Y. ; Jyothi, P. ; Associate Professor, Department of ECE, Malla Reddy College of Engineering for Women, Hyderabad, Telangana, India ; Professor, HOD, Department of ECE, Malla Reddy College of Engineering for Women, Hyderabad, Telangana, India ; Assistant Professor, Department of ECE, Malla Reddy College of Engineering for Women, Hyderabad, Telangana, India</creatorcontrib><description>Communication is the major path to convey the information. Speech is the best mode for conveying the information. Human to human information can be exchanged through some particular language. But the interaction between human and machine is the major challenge which deals with ASR (Automatic speech recognition). This research recognizes speaker independent data which gives good results by using T-DSCC (Teager energy operator delta spectral cepstral coefficients) feature extraction technique and DNN (Deep Neural Networks) feature classification technique. This paper also uses CASA technique for pre-processing the speech signals. This research is done by creating the database for 10 most speak able isolated words in Telugu.</description><identifier>ISSN: 2278-3075</identifier><identifier>EISSN: 2278-3075</identifier><identifier>DOI: 10.35940/ijitee.K2544.0981119</identifier><language>eng</language><ispartof>International journal of innovative technology and exploring engineering, 2019-09, Vol.8 (11), p.3419-3422</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Kumar, Dr. Archek Praveen</creatorcontrib><creatorcontrib>Maheshwari, Neerudu Uma</creatorcontrib><creatorcontrib>Sangeetha, Y.</creatorcontrib><creatorcontrib>Jyothi, P.</creatorcontrib><creatorcontrib>Associate Professor, Department of ECE, Malla Reddy College of Engineering for Women, Hyderabad, Telangana, India</creatorcontrib><creatorcontrib>Professor, HOD, Department of ECE, Malla Reddy College of Engineering for Women, Hyderabad, Telangana, India</creatorcontrib><creatorcontrib>Assistant Professor, Department of ECE, Malla Reddy College of Engineering for Women, Hyderabad, Telangana, India</creatorcontrib><title>Isolated Telugu Speech Recognition On T-DSCC And DNN Techniques</title><title>International journal of innovative technology and exploring engineering</title><description>Communication is the major path to convey the information. Speech is the best mode for conveying the information. Human to human information can be exchanged through some particular language. But the interaction between human and machine is the major challenge which deals with ASR (Automatic speech recognition). This research recognizes speaker independent data which gives good results by using T-DSCC (Teager energy operator delta spectral cepstral coefficients) feature extraction technique and DNN (Deep Neural Networks) feature classification technique. This paper also uses CASA technique for pre-processing the speech signals. This research is done by creating the database for 10 most speak able isolated words in Telugu.</description><issn>2278-3075</issn><issn>2278-3075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpN0M1OwkAUBeCJ0USCPILJvEDr3PlpOytDigqRQCLdT2baO1BSW-y0C99eAixcnbM4OYuPkGdgsVBaspf6WA-I8SdXUsZMZwCg78iE8zSLBEvV_b_-SGYhHBljICRkiZ6Q11XoGjtgRQtsxv1IdyfE8kC_sOz2bT3UXUu3LS2ixS7P6byt6GKzOW_LQ1v_jBieyIO3TcDZLaekeH8r8mW03n6s8vk6KiEROgKPVjn0HMDpJFMu8aVMHVOaKcUcpNxJ6zkybxMQIpNaVNl5bkFo4YWYEnW9LfsuhB69OfX1t-1_DTBzcTBXB3NxMDcH8QepSFCl</recordid><startdate>20190930</startdate><enddate>20190930</enddate><creator>Kumar, Dr. Archek Praveen</creator><creator>Maheshwari, Neerudu Uma</creator><creator>Sangeetha, Y.</creator><creator>Jyothi, P.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190930</creationdate><title>Isolated Telugu Speech Recognition On T-DSCC And DNN Techniques</title><author>Kumar, Dr. Archek Praveen ; Maheshwari, Neerudu Uma ; Sangeetha, Y. ; Jyothi, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1639-1fea5bef211b9685b6fc47b0590550b172b4af2e0fa61338493d8ef2a1393f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Dr. Archek Praveen</creatorcontrib><creatorcontrib>Maheshwari, Neerudu Uma</creatorcontrib><creatorcontrib>Sangeetha, Y.</creatorcontrib><creatorcontrib>Jyothi, P.</creatorcontrib><creatorcontrib>Associate Professor, Department of ECE, Malla Reddy College of Engineering for Women, Hyderabad, Telangana, India</creatorcontrib><creatorcontrib>Professor, HOD, Department of ECE, Malla Reddy College of Engineering for Women, Hyderabad, Telangana, India</creatorcontrib><creatorcontrib>Assistant Professor, Department of ECE, Malla Reddy College of Engineering for Women, Hyderabad, Telangana, India</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of innovative technology and exploring engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Dr. Archek Praveen</au><au>Maheshwari, Neerudu Uma</au><au>Sangeetha, Y.</au><au>Jyothi, P.</au><aucorp>Associate Professor, Department of ECE, Malla Reddy College of Engineering for Women, Hyderabad, Telangana, India</aucorp><aucorp>Professor, HOD, Department of ECE, Malla Reddy College of Engineering for Women, Hyderabad, Telangana, India</aucorp><aucorp>Assistant Professor, Department of ECE, Malla Reddy College of Engineering for Women, Hyderabad, Telangana, India</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Isolated Telugu Speech Recognition On T-DSCC And DNN Techniques</atitle><jtitle>International journal of innovative technology and exploring engineering</jtitle><date>2019-09-30</date><risdate>2019</risdate><volume>8</volume><issue>11</issue><spage>3419</spage><epage>3422</epage><pages>3419-3422</pages><issn>2278-3075</issn><eissn>2278-3075</eissn><abstract>Communication is the major path to convey the information. Speech is the best mode for conveying the information. Human to human information can be exchanged through some particular language. But the interaction between human and machine is the major challenge which deals with ASR (Automatic speech recognition). This research recognizes speaker independent data which gives good results by using T-DSCC (Teager energy operator delta spectral cepstral coefficients) feature extraction technique and DNN (Deep Neural Networks) feature classification technique. This paper also uses CASA technique for pre-processing the speech signals. This research is done by creating the database for 10 most speak able isolated words in Telugu.</abstract><doi>10.35940/ijitee.K2544.0981119</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2278-3075
ispartof International journal of innovative technology and exploring engineering, 2019-09, Vol.8 (11), p.3419-3422
issn 2278-3075
2278-3075
language eng
recordid cdi_crossref_primary_10_35940_ijitee_K2544_0981119
source EZB-FREE-00999 freely available EZB journals
title Isolated Telugu Speech Recognition On T-DSCC And DNN Techniques
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T14%3A38%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Isolated%20Telugu%20Speech%20Recognition%20On%20T-DSCC%20And%20DNN%20Techniques&rft.jtitle=International%20journal%20of%20innovative%20technology%20and%20exploring%20engineering&rft.au=Kumar,%20Dr.%20Archek%20Praveen&rft.aucorp=Associate%20Professor,%20Department%20of%20ECE,%20Malla%20Reddy%20College%20of%20Engineering%20for%20Women,%20Hyderabad,%20Telangana,%20India&rft.date=2019-09-30&rft.volume=8&rft.issue=11&rft.spage=3419&rft.epage=3422&rft.pages=3419-3422&rft.issn=2278-3075&rft.eissn=2278-3075&rft_id=info:doi/10.35940/ijitee.K2544.0981119&rft_dat=%3Ccrossref%3E10_35940_ijitee_K2544_0981119%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true