An Optimized Hybrid Neural Network Model for Detecting Depression among Twitter Users
The proposed work is to extensively evaluate if a user is depressed or not using his Tweets on Twitter. With the omni presence of social media, this method should help in identifying the depression of users. We propose an Optimized Hybrid Neural Network model to evaluate the user tweets on Twitter t...
Gespeichert in:
Veröffentlicht in: | International journal of innovative technology and exploring engineering 2019-08, Vol.8 (10), p.2781-2795 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2795 |
---|---|
container_issue | 10 |
container_start_page | 2781 |
container_title | International journal of innovative technology and exploring engineering |
container_volume | 8 |
creator | Chandra, Dhamini Poorna Rajarajeswari, Dr. S. |
description | The proposed work is to extensively evaluate if a user is depressed or not using his Tweets on Twitter. With the omni presence of social media, this method should help in identifying the depression of users. We propose an Optimized Hybrid Neural Network model to evaluate the user tweets on Twitter to analyze if a user is depressed or not. Where Neural Network is trained using Tweets to predict the polarity of Tweets. The Neural Network is trained in such a way that at any point when presented with a Tweet the model outputs the polarity associated with the Tweet. Also, a user-friendly GUI is presented to the user that loads the trained neural network in no time and can be used to analyze the users’ state of depression. The aim of this research work is to provide an algorithm to evaluate users’ sentiment on Twitter in a way better than all other existing techniques. |
doi_str_mv | 10.35940/ijitee.J9590.0881019 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_35940_ijitee_J9590_0881019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_35940_ijitee_J9590_0881019</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1639-283c56a7aa880b87fd1c13a3aa31c4e63c3eacdac26a9125a2d245cd180fce393</originalsourceid><addsrcrecordid>eNpNkM1OAjEURhujiQR5BJO-wGDbO51plwR_wKBsYD25tHdMERjS1hB8egmwcHVOvsW3OIw9SjEEbUvxFNYhEw3frbZiKIyRQtob1lOqNgWIWt_-83s2SGkthJBQSlPZHluOdny-z2EbfsnzyXEVg-ef9BNxc0I-dPGbf3SeNrztIn-mTC6H3dfJ9pFSCt2O47Y7DYtDyJkiXyaK6YHdtbhJNLiyz5avL4vxpJjN36bj0axwsgJbKANOV1gjGiNWpm69dBIQEEG6kipwQOg8OlWhlUqj8qrUzksjWkdgoc_05dfFLqVIbbOPYYvx2EjRnPM0lzzNOU9zzQN_7bpbYg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An Optimized Hybrid Neural Network Model for Detecting Depression among Twitter Users</title><source>EZB Electronic Journals Library</source><creator>Chandra, Dhamini Poorna ; Rajarajeswari, Dr. S.</creator><creatorcontrib>Chandra, Dhamini Poorna ; Rajarajeswari, Dr. S. ; CSE, M S Ramaiah Institute of Technology, Bangalore, India</creatorcontrib><description>The proposed work is to extensively evaluate if a user is depressed or not using his Tweets on Twitter. With the omni presence of social media, this method should help in identifying the depression of users. We propose an Optimized Hybrid Neural Network model to evaluate the user tweets on Twitter to analyze if a user is depressed or not. Where Neural Network is trained using Tweets to predict the polarity of Tweets. The Neural Network is trained in such a way that at any point when presented with a Tweet the model outputs the polarity associated with the Tweet. Also, a user-friendly GUI is presented to the user that loads the trained neural network in no time and can be used to analyze the users’ state of depression. The aim of this research work is to provide an algorithm to evaluate users’ sentiment on Twitter in a way better than all other existing techniques.</description><identifier>ISSN: 2278-3075</identifier><identifier>EISSN: 2278-3075</identifier><identifier>DOI: 10.35940/ijitee.J9590.0881019</identifier><language>eng</language><ispartof>International journal of innovative technology and exploring engineering, 2019-08, Vol.8 (10), p.2781-2795</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Chandra, Dhamini Poorna</creatorcontrib><creatorcontrib>Rajarajeswari, Dr. S.</creatorcontrib><creatorcontrib>CSE, M S Ramaiah Institute of Technology, Bangalore, India</creatorcontrib><title>An Optimized Hybrid Neural Network Model for Detecting Depression among Twitter Users</title><title>International journal of innovative technology and exploring engineering</title><description>The proposed work is to extensively evaluate if a user is depressed or not using his Tweets on Twitter. With the omni presence of social media, this method should help in identifying the depression of users. We propose an Optimized Hybrid Neural Network model to evaluate the user tweets on Twitter to analyze if a user is depressed or not. Where Neural Network is trained using Tweets to predict the polarity of Tweets. The Neural Network is trained in such a way that at any point when presented with a Tweet the model outputs the polarity associated with the Tweet. Also, a user-friendly GUI is presented to the user that loads the trained neural network in no time and can be used to analyze the users’ state of depression. The aim of this research work is to provide an algorithm to evaluate users’ sentiment on Twitter in a way better than all other existing techniques.</description><issn>2278-3075</issn><issn>2278-3075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpNkM1OAjEURhujiQR5BJO-wGDbO51plwR_wKBsYD25tHdMERjS1hB8egmwcHVOvsW3OIw9SjEEbUvxFNYhEw3frbZiKIyRQtob1lOqNgWIWt_-83s2SGkthJBQSlPZHluOdny-z2EbfsnzyXEVg-ef9BNxc0I-dPGbf3SeNrztIn-mTC6H3dfJ9pFSCt2O47Y7DYtDyJkiXyaK6YHdtbhJNLiyz5avL4vxpJjN36bj0axwsgJbKANOV1gjGiNWpm69dBIQEEG6kipwQOg8OlWhlUqj8qrUzksjWkdgoc_05dfFLqVIbbOPYYvx2EjRnPM0lzzNOU9zzQN_7bpbYg</recordid><startdate>20190830</startdate><enddate>20190830</enddate><creator>Chandra, Dhamini Poorna</creator><creator>Rajarajeswari, Dr. S.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190830</creationdate><title>An Optimized Hybrid Neural Network Model for Detecting Depression among Twitter Users</title><author>Chandra, Dhamini Poorna ; Rajarajeswari, Dr. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1639-283c56a7aa880b87fd1c13a3aa31c4e63c3eacdac26a9125a2d245cd180fce393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Chandra, Dhamini Poorna</creatorcontrib><creatorcontrib>Rajarajeswari, Dr. S.</creatorcontrib><creatorcontrib>CSE, M S Ramaiah Institute of Technology, Bangalore, India</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of innovative technology and exploring engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chandra, Dhamini Poorna</au><au>Rajarajeswari, Dr. S.</au><aucorp>CSE, M S Ramaiah Institute of Technology, Bangalore, India</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Optimized Hybrid Neural Network Model for Detecting Depression among Twitter Users</atitle><jtitle>International journal of innovative technology and exploring engineering</jtitle><date>2019-08-30</date><risdate>2019</risdate><volume>8</volume><issue>10</issue><spage>2781</spage><epage>2795</epage><pages>2781-2795</pages><issn>2278-3075</issn><eissn>2278-3075</eissn><abstract>The proposed work is to extensively evaluate if a user is depressed or not using his Tweets on Twitter. With the omni presence of social media, this method should help in identifying the depression of users. We propose an Optimized Hybrid Neural Network model to evaluate the user tweets on Twitter to analyze if a user is depressed or not. Where Neural Network is trained using Tweets to predict the polarity of Tweets. The Neural Network is trained in such a way that at any point when presented with a Tweet the model outputs the polarity associated with the Tweet. Also, a user-friendly GUI is presented to the user that loads the trained neural network in no time and can be used to analyze the users’ state of depression. The aim of this research work is to provide an algorithm to evaluate users’ sentiment on Twitter in a way better than all other existing techniques.</abstract><doi>10.35940/ijitee.J9590.0881019</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2278-3075 |
ispartof | International journal of innovative technology and exploring engineering, 2019-08, Vol.8 (10), p.2781-2795 |
issn | 2278-3075 2278-3075 |
language | eng |
recordid | cdi_crossref_primary_10_35940_ijitee_J9590_0881019 |
source | EZB Electronic Journals Library |
title | An Optimized Hybrid Neural Network Model for Detecting Depression among Twitter Users |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A02%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Optimized%20Hybrid%20Neural%20Network%20Model%20for%20Detecting%20Depression%20among%20Twitter%20Users&rft.jtitle=International%20journal%20of%20innovative%20technology%20and%20exploring%20engineering&rft.au=Chandra,%20Dhamini%20Poorna&rft.aucorp=CSE,%20M%20S%20Ramaiah%20Institute%20of%20Technology,%20Bangalore,%20India&rft.date=2019-08-30&rft.volume=8&rft.issue=10&rft.spage=2781&rft.epage=2795&rft.pages=2781-2795&rft.issn=2278-3075&rft.eissn=2278-3075&rft_id=info:doi/10.35940/ijitee.J9590.0881019&rft_dat=%3Ccrossref%3E10_35940_ijitee_J9590_0881019%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |