Vortex Prediction in a Pump Intake System Using Computational Fluid Dynamics
A pump intake system consists of forebay, pumpbay and pipeline arrangements through which water flows in order to meet its demand. Vortices and velocity fluctuations affects the performance of a pump intake system. This paper presents the vortex prediction in a pump sump for varying flow conditions...
Gespeichert in:
Veröffentlicht in: | International journal of innovative technology and exploring engineering 2019-08, Vol.8 (10), p.3158-3163 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3163 |
---|---|
container_issue | 10 |
container_start_page | 3158 |
container_title | International journal of innovative technology and exploring engineering |
container_volume | 8 |
creator | S., Ajai Kumar, K. Rahiman, P. M. Abdul Sohoni, V. S. Jahagirdar, V. S. |
description | A pump intake system consists of forebay, pumpbay and pipeline arrangements through which water flows in order to meet its demand. Vortices and velocity fluctuations affects the performance of a pump intake system. This paper presents the vortex prediction in a pump sump for varying flow conditions across the pump bay and the bellmouth section, using computational fluid dynamics (CFD) code Flow 3D. Geometry of rectangular type sump was chosen for comparing the physical experimentation with the computational model. The velocity fluctuations, location of vortex formation and its profiles predicted by CFD code was compared with that of the physically observed experiments. The velocity and fluid flow profiles predicted by CFD correlated well with the flow conditions observed during the physical experiments. Further, characteristics of vortex were also studied with respect to the velocity change. Increase in the wobbling phenomenon of the vortex with increase in the flow velocity was also identified with the computational studies. CFD can be used as a tool to study the preliminary design of a hydraulic system for a particular field condition, thus complementing the physical model studies to facilitate the construction of an optimized and effective pump intake system. |
doi_str_mv | 10.35940/ijitee.J9515.0881019 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_35940_ijitee_J9515_0881019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_35940_ijitee_J9515_0881019</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2159-5f9cc0b3e4bebcc3ee84219755382a9c489bdcb13d72118628eaa8f93e9923723</originalsourceid><addsrcrecordid>eNpN0MtKxDAUBuAgCg7jPIKQF2jNpbHJUqqjIwUHdNyGND2VjL2RpGDfXueycHX-xeHn50PolpKUC5WRO7d3ESB9VYKKlEhJCVUXaMFYLhNOcnH5L1-jVQh7QgjlGZX3aoHKz8FH-MFbD7Wz0Q09dj02eDt1I9700XwDfp9DhA7vguu_cDF04xTN4dO0eN1OrsaPc286Z8MNumpMG2B1vku0Wz99FC9J-fa8KR7KxDIqVCIaZS2pOGQVVNZyAJkxqnIhuGRG2UyqqrYV5XXO6N9MJsEY2SgOSjGeM75E4tRr_RCCh0aP3nXGz5oSfVTRJxV9VNFnFf4LMatXcg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Vortex Prediction in a Pump Intake System Using Computational Fluid Dynamics</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>S., Ajai ; Kumar, K. ; Rahiman, P. M. Abdul ; Sohoni, V. S. ; Jahagirdar, V. S.</creator><creatorcontrib>S., Ajai ; Kumar, K. ; Rahiman, P. M. Abdul ; Sohoni, V. S. ; Jahagirdar, V. S. ; Hydraulic Machinery and Cavitation (HMC) Division, Central Water and Power Research Station, Pune, India ; Department of Civil Engineering, BharatiVidyapeeth Deemed University, College of Engineering, Pune, India</creatorcontrib><description>A pump intake system consists of forebay, pumpbay and pipeline arrangements through which water flows in order to meet its demand. Vortices and velocity fluctuations affects the performance of a pump intake system. This paper presents the vortex prediction in a pump sump for varying flow conditions across the pump bay and the bellmouth section, using computational fluid dynamics (CFD) code Flow 3D. Geometry of rectangular type sump was chosen for comparing the physical experimentation with the computational model. The velocity fluctuations, location of vortex formation and its profiles predicted by CFD code was compared with that of the physically observed experiments. The velocity and fluid flow profiles predicted by CFD correlated well with the flow conditions observed during the physical experiments. Further, characteristics of vortex were also studied with respect to the velocity change. Increase in the wobbling phenomenon of the vortex with increase in the flow velocity was also identified with the computational studies. CFD can be used as a tool to study the preliminary design of a hydraulic system for a particular field condition, thus complementing the physical model studies to facilitate the construction of an optimized and effective pump intake system.</description><identifier>ISSN: 2278-3075</identifier><identifier>EISSN: 2278-3075</identifier><identifier>DOI: 10.35940/ijitee.J9515.0881019</identifier><language>eng</language><ispartof>International journal of innovative technology and exploring engineering, 2019-08, Vol.8 (10), p.3158-3163</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2159-5f9cc0b3e4bebcc3ee84219755382a9c489bdcb13d72118628eaa8f93e9923723</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>S., Ajai</creatorcontrib><creatorcontrib>Kumar, K.</creatorcontrib><creatorcontrib>Rahiman, P. M. Abdul</creatorcontrib><creatorcontrib>Sohoni, V. S.</creatorcontrib><creatorcontrib>Jahagirdar, V. S.</creatorcontrib><creatorcontrib>Hydraulic Machinery and Cavitation (HMC) Division, Central Water and Power Research Station, Pune, India</creatorcontrib><creatorcontrib>Department of Civil Engineering, BharatiVidyapeeth Deemed University, College of Engineering, Pune, India</creatorcontrib><title>Vortex Prediction in a Pump Intake System Using Computational Fluid Dynamics</title><title>International journal of innovative technology and exploring engineering</title><description>A pump intake system consists of forebay, pumpbay and pipeline arrangements through which water flows in order to meet its demand. Vortices and velocity fluctuations affects the performance of a pump intake system. This paper presents the vortex prediction in a pump sump for varying flow conditions across the pump bay and the bellmouth section, using computational fluid dynamics (CFD) code Flow 3D. Geometry of rectangular type sump was chosen for comparing the physical experimentation with the computational model. The velocity fluctuations, location of vortex formation and its profiles predicted by CFD code was compared with that of the physically observed experiments. The velocity and fluid flow profiles predicted by CFD correlated well with the flow conditions observed during the physical experiments. Further, characteristics of vortex were also studied with respect to the velocity change. Increase in the wobbling phenomenon of the vortex with increase in the flow velocity was also identified with the computational studies. CFD can be used as a tool to study the preliminary design of a hydraulic system for a particular field condition, thus complementing the physical model studies to facilitate the construction of an optimized and effective pump intake system.</description><issn>2278-3075</issn><issn>2278-3075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpN0MtKxDAUBuAgCg7jPIKQF2jNpbHJUqqjIwUHdNyGND2VjL2RpGDfXueycHX-xeHn50PolpKUC5WRO7d3ESB9VYKKlEhJCVUXaMFYLhNOcnH5L1-jVQh7QgjlGZX3aoHKz8FH-MFbD7Wz0Q09dj02eDt1I9700XwDfp9DhA7vguu_cDF04xTN4dO0eN1OrsaPc286Z8MNumpMG2B1vku0Wz99FC9J-fa8KR7KxDIqVCIaZS2pOGQVVNZyAJkxqnIhuGRG2UyqqrYV5XXO6N9MJsEY2SgOSjGeM75E4tRr_RCCh0aP3nXGz5oSfVTRJxV9VNFnFf4LMatXcg</recordid><startdate>20190830</startdate><enddate>20190830</enddate><creator>S., Ajai</creator><creator>Kumar, K.</creator><creator>Rahiman, P. M. Abdul</creator><creator>Sohoni, V. S.</creator><creator>Jahagirdar, V. S.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190830</creationdate><title>Vortex Prediction in a Pump Intake System Using Computational Fluid Dynamics</title><author>S., Ajai ; Kumar, K. ; Rahiman, P. M. Abdul ; Sohoni, V. S. ; Jahagirdar, V. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2159-5f9cc0b3e4bebcc3ee84219755382a9c489bdcb13d72118628eaa8f93e9923723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>online_resources</toplevel><creatorcontrib>S., Ajai</creatorcontrib><creatorcontrib>Kumar, K.</creatorcontrib><creatorcontrib>Rahiman, P. M. Abdul</creatorcontrib><creatorcontrib>Sohoni, V. S.</creatorcontrib><creatorcontrib>Jahagirdar, V. S.</creatorcontrib><creatorcontrib>Hydraulic Machinery and Cavitation (HMC) Division, Central Water and Power Research Station, Pune, India</creatorcontrib><creatorcontrib>Department of Civil Engineering, BharatiVidyapeeth Deemed University, College of Engineering, Pune, India</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of innovative technology and exploring engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>S., Ajai</au><au>Kumar, K.</au><au>Rahiman, P. M. Abdul</au><au>Sohoni, V. S.</au><au>Jahagirdar, V. S.</au><aucorp>Hydraulic Machinery and Cavitation (HMC) Division, Central Water and Power Research Station, Pune, India</aucorp><aucorp>Department of Civil Engineering, BharatiVidyapeeth Deemed University, College of Engineering, Pune, India</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vortex Prediction in a Pump Intake System Using Computational Fluid Dynamics</atitle><jtitle>International journal of innovative technology and exploring engineering</jtitle><date>2019-08-30</date><risdate>2019</risdate><volume>8</volume><issue>10</issue><spage>3158</spage><epage>3163</epage><pages>3158-3163</pages><issn>2278-3075</issn><eissn>2278-3075</eissn><abstract>A pump intake system consists of forebay, pumpbay and pipeline arrangements through which water flows in order to meet its demand. Vortices and velocity fluctuations affects the performance of a pump intake system. This paper presents the vortex prediction in a pump sump for varying flow conditions across the pump bay and the bellmouth section, using computational fluid dynamics (CFD) code Flow 3D. Geometry of rectangular type sump was chosen for comparing the physical experimentation with the computational model. The velocity fluctuations, location of vortex formation and its profiles predicted by CFD code was compared with that of the physically observed experiments. The velocity and fluid flow profiles predicted by CFD correlated well with the flow conditions observed during the physical experiments. Further, characteristics of vortex were also studied with respect to the velocity change. Increase in the wobbling phenomenon of the vortex with increase in the flow velocity was also identified with the computational studies. CFD can be used as a tool to study the preliminary design of a hydraulic system for a particular field condition, thus complementing the physical model studies to facilitate the construction of an optimized and effective pump intake system.</abstract><doi>10.35940/ijitee.J9515.0881019</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2278-3075 |
ispartof | International journal of innovative technology and exploring engineering, 2019-08, Vol.8 (10), p.3158-3163 |
issn | 2278-3075 2278-3075 |
language | eng |
recordid | cdi_crossref_primary_10_35940_ijitee_J9515_0881019 |
source | EZB-FREE-00999 freely available EZB journals |
title | Vortex Prediction in a Pump Intake System Using Computational Fluid Dynamics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T22%3A46%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vortex%20Prediction%20in%20a%20Pump%20Intake%20System%20Using%20Computational%20Fluid%20Dynamics&rft.jtitle=International%20journal%20of%20innovative%20technology%20and%20exploring%20engineering&rft.au=S.,%20Ajai&rft.aucorp=Hydraulic%20Machinery%20and%20Cavitation%20(HMC)%20Division,%20Central%20Water%20and%20Power%20Research%20Station,%20Pune,%20India&rft.date=2019-08-30&rft.volume=8&rft.issue=10&rft.spage=3158&rft.epage=3163&rft.pages=3158-3163&rft.issn=2278-3075&rft.eissn=2278-3075&rft_id=info:doi/10.35940/ijitee.J9515.0881019&rft_dat=%3Ccrossref%3E10_35940_ijitee_J9515_0881019%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |