Multimodel System Identification Based on New Fuzzy Partitioning Similarity Measure

The problem of identifying unstructured nonlinear systems is generally addressed on the basis of multi-model representations involving several linear local models. In the present work, local models are combined to get a global representation using incremental fuzzy clustering. The main contribution...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of innovative technology and exploring engineering 2021-07, Vol.10 (9), p.19-30
Hauptverfasser: Radouane, Abdelhadi, Giri, Fouad, Naitali, Abdessamad, Chaoui, Fatima Zahra
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 30
container_issue 9
container_start_page 19
container_title International journal of innovative technology and exploring engineering
container_volume 10
creator Radouane, Abdelhadi
Giri, Fouad
Naitali, Abdessamad
Chaoui, Fatima Zahra
description The problem of identifying unstructured nonlinear systems is generally addressed on the basis of multi-model representations involving several linear local models. In the present work, local models are combined to get a global representation using incremental fuzzy clustering. The main contribution is a novel vector similarity measure defined in the System Working Space (SWS) that combines the angular deviation and the usual Euclidean distance. Such a combination makes the new metric highly discriminating leading to a better partitioning of the operating space providing, thereby, a higher accuracy of the model. The developed partitioning method is first evaluated by performing linear local model (LLM) based identification of a academic benchmark multivariable nonlinear system. Then, the performances of the identification method are evaluated using experimental tropospheric ozone data. These evaluations illustrate the supremacy of the new method over the standard Euclidian-distance based partitioning approach.
doi_str_mv 10.35940/ijitee.I9290.0710921
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_35940_ijitee_I9290_0710921</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_35940_ijitee_I9290_0710921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c931-7b4937db1053ed2c4b956fec3f72883c888300df10a05e6bf3a94e92420c881f3</originalsourceid><addsrcrecordid>eNpNkMtKxDAYhYMoOIzzCEJeoPVP0luWOjhamFGhsy9p-0cy9CJJinSe3s5l4eacAx-cxUfII4NQxDKCJ3MwHjHMJZcQQspAcnZDFpynWSAgjW__7Xuycu4AAExELEvkghS7sfWmGxpsaTE5jx3NG-y90aZW3gw9fVEOGzqPD_ylm_F4nOiXst6coOm_aWE60ypr_ER3qNxo8YHcadU6XF17Sfab1_36Pdh-vuXr521QS8GCtIqkSJuKQSyw4XVUyTjRWAud8iwTdTYHQKMZKIgxqbRQMkLJIw4zY1osSXy5re3gnEVd_ljTKTuVDMqzm_Lipjy7Ka9uxB8FW1oN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multimodel System Identification Based on New Fuzzy Partitioning Similarity Measure</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Radouane, Abdelhadi ; Giri, Fouad ; Naitali, Abdessamad ; Chaoui, Fatima Zahra</creator><creatorcontrib>Radouane, Abdelhadi ; Giri, Fouad ; Naitali, Abdessamad ; Chaoui, Fatima Zahra ; M2PI Lab, ENSAM, Mohammed V University, Rabat, Morocco ; RMI Lab, FST Hassan First University of Settat, Morocco ; UNICAEN LAC Lab, Caen Normandie University, Caen, France</creatorcontrib><description>The problem of identifying unstructured nonlinear systems is generally addressed on the basis of multi-model representations involving several linear local models. In the present work, local models are combined to get a global representation using incremental fuzzy clustering. The main contribution is a novel vector similarity measure defined in the System Working Space (SWS) that combines the angular deviation and the usual Euclidean distance. Such a combination makes the new metric highly discriminating leading to a better partitioning of the operating space providing, thereby, a higher accuracy of the model. The developed partitioning method is first evaluated by performing linear local model (LLM) based identification of a academic benchmark multivariable nonlinear system. Then, the performances of the identification method are evaluated using experimental tropospheric ozone data. These evaluations illustrate the supremacy of the new method over the standard Euclidian-distance based partitioning approach.</description><identifier>ISSN: 2278-3075</identifier><identifier>EISSN: 2278-3075</identifier><identifier>DOI: 10.35940/ijitee.I9290.0710921</identifier><language>eng</language><ispartof>International journal of innovative technology and exploring engineering, 2021-07, Vol.10 (9), p.19-30</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c931-7b4937db1053ed2c4b956fec3f72883c888300df10a05e6bf3a94e92420c881f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Radouane, Abdelhadi</creatorcontrib><creatorcontrib>Giri, Fouad</creatorcontrib><creatorcontrib>Naitali, Abdessamad</creatorcontrib><creatorcontrib>Chaoui, Fatima Zahra</creatorcontrib><creatorcontrib>M2PI Lab, ENSAM, Mohammed V University, Rabat, Morocco</creatorcontrib><creatorcontrib>RMI Lab, FST Hassan First University of Settat, Morocco</creatorcontrib><creatorcontrib>UNICAEN LAC Lab, Caen Normandie University, Caen, France</creatorcontrib><title>Multimodel System Identification Based on New Fuzzy Partitioning Similarity Measure</title><title>International journal of innovative technology and exploring engineering</title><description>The problem of identifying unstructured nonlinear systems is generally addressed on the basis of multi-model representations involving several linear local models. In the present work, local models are combined to get a global representation using incremental fuzzy clustering. The main contribution is a novel vector similarity measure defined in the System Working Space (SWS) that combines the angular deviation and the usual Euclidean distance. Such a combination makes the new metric highly discriminating leading to a better partitioning of the operating space providing, thereby, a higher accuracy of the model. The developed partitioning method is first evaluated by performing linear local model (LLM) based identification of a academic benchmark multivariable nonlinear system. Then, the performances of the identification method are evaluated using experimental tropospheric ozone data. These evaluations illustrate the supremacy of the new method over the standard Euclidian-distance based partitioning approach.</description><issn>2278-3075</issn><issn>2278-3075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpNkMtKxDAYhYMoOIzzCEJeoPVP0luWOjhamFGhsy9p-0cy9CJJinSe3s5l4eacAx-cxUfII4NQxDKCJ3MwHjHMJZcQQspAcnZDFpynWSAgjW__7Xuycu4AAExELEvkghS7sfWmGxpsaTE5jx3NG-y90aZW3gw9fVEOGzqPD_ylm_F4nOiXst6coOm_aWE60ypr_ER3qNxo8YHcadU6XF17Sfab1_36Pdh-vuXr521QS8GCtIqkSJuKQSyw4XVUyTjRWAud8iwTdTYHQKMZKIgxqbRQMkLJIw4zY1osSXy5re3gnEVd_ljTKTuVDMqzm_Lipjy7Ka9uxB8FW1oN</recordid><startdate>20210730</startdate><enddate>20210730</enddate><creator>Radouane, Abdelhadi</creator><creator>Giri, Fouad</creator><creator>Naitali, Abdessamad</creator><creator>Chaoui, Fatima Zahra</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210730</creationdate><title>Multimodel System Identification Based on New Fuzzy Partitioning Similarity Measure</title><author>Radouane, Abdelhadi ; Giri, Fouad ; Naitali, Abdessamad ; Chaoui, Fatima Zahra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c931-7b4937db1053ed2c4b956fec3f72883c888300df10a05e6bf3a94e92420c881f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Radouane, Abdelhadi</creatorcontrib><creatorcontrib>Giri, Fouad</creatorcontrib><creatorcontrib>Naitali, Abdessamad</creatorcontrib><creatorcontrib>Chaoui, Fatima Zahra</creatorcontrib><creatorcontrib>M2PI Lab, ENSAM, Mohammed V University, Rabat, Morocco</creatorcontrib><creatorcontrib>RMI Lab, FST Hassan First University of Settat, Morocco</creatorcontrib><creatorcontrib>UNICAEN LAC Lab, Caen Normandie University, Caen, France</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of innovative technology and exploring engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Radouane, Abdelhadi</au><au>Giri, Fouad</au><au>Naitali, Abdessamad</au><au>Chaoui, Fatima Zahra</au><aucorp>M2PI Lab, ENSAM, Mohammed V University, Rabat, Morocco</aucorp><aucorp>RMI Lab, FST Hassan First University of Settat, Morocco</aucorp><aucorp>UNICAEN LAC Lab, Caen Normandie University, Caen, France</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multimodel System Identification Based on New Fuzzy Partitioning Similarity Measure</atitle><jtitle>International journal of innovative technology and exploring engineering</jtitle><date>2021-07-30</date><risdate>2021</risdate><volume>10</volume><issue>9</issue><spage>19</spage><epage>30</epage><pages>19-30</pages><issn>2278-3075</issn><eissn>2278-3075</eissn><abstract>The problem of identifying unstructured nonlinear systems is generally addressed on the basis of multi-model representations involving several linear local models. In the present work, local models are combined to get a global representation using incremental fuzzy clustering. The main contribution is a novel vector similarity measure defined in the System Working Space (SWS) that combines the angular deviation and the usual Euclidean distance. Such a combination makes the new metric highly discriminating leading to a better partitioning of the operating space providing, thereby, a higher accuracy of the model. The developed partitioning method is first evaluated by performing linear local model (LLM) based identification of a academic benchmark multivariable nonlinear system. Then, the performances of the identification method are evaluated using experimental tropospheric ozone data. These evaluations illustrate the supremacy of the new method over the standard Euclidian-distance based partitioning approach.</abstract><doi>10.35940/ijitee.I9290.0710921</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2278-3075
ispartof International journal of innovative technology and exploring engineering, 2021-07, Vol.10 (9), p.19-30
issn 2278-3075
2278-3075
language eng
recordid cdi_crossref_primary_10_35940_ijitee_I9290_0710921
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title Multimodel System Identification Based on New Fuzzy Partitioning Similarity Measure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T17%3A15%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multimodel%20System%20Identification%20Based%20on%20New%20Fuzzy%20Partitioning%20Similarity%20Measure&rft.jtitle=International%20journal%20of%20innovative%20technology%20and%20exploring%20engineering&rft.au=Radouane,%20Abdelhadi&rft.aucorp=M2PI%20Lab,%20ENSAM,%20Mohammed%20V%20University,%20Rabat,%20Morocco&rft.date=2021-07-30&rft.volume=10&rft.issue=9&rft.spage=19&rft.epage=30&rft.pages=19-30&rft.issn=2278-3075&rft.eissn=2278-3075&rft_id=info:doi/10.35940/ijitee.I9290.0710921&rft_dat=%3Ccrossref%3E10_35940_ijitee_I9290_0710921%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true