Health Care Data Analytics – Comparative Study of Supervised Model

In the present pandemic situation, health care data is generated voluminously in an unstructured format posing challenge to technology in perspective of analysis, classification and prediction. The data generated is converted to structured format. Suitability of methodology keeping in mind low compu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of innovative technology and exploring engineering 2022-05, Vol.11 (6), p.22-28
Hauptverfasser: H. K., Mr. Madhu, Ramesh, Dr. D.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 28
container_issue 6
container_start_page 22
container_title International journal of innovative technology and exploring engineering
container_volume 11
creator H. K., Mr. Madhu
Ramesh, Dr. D.
description In the present pandemic situation, health care data is generated voluminously in an unstructured format posing challenge to technology in perspective of analysis, classification and prediction. The data generated is converted to structured format. Suitability of methodology keeping in mind low computational complexity and high accuracy is a major concern which has emerged as a problem in data science. In this research work real time heart disease data set is considered to evaluate the accuracy of six supervised methods –SVM (Support Vector Machine), KNN (K-Nearest Neighbor), GNB (Gaussian Naïve Bayes), LR (Logistic Regression), DT (Decision Tree) and RF (Random Forest). Analysis through ROC curve and confusion matrix predominantly justify RF classifier and LR gives efficient results compared to other methods. This is a preprocessing stage; every researcher has to perform before deciding the methodology to be considered for further processing.
doi_str_mv 10.35940/ijitee.F9906.0511622
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_35940_ijitee_F9906_0511622</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_35940_ijitee_F9906_0511622</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1452-fed583a6cc615f9ae99b7ad6e44717a1fc760f60ecc0405176009d10d47318103</originalsourceid><addsrcrecordid>eNpN0E1OwzAQBWALgURVegQkXyBhHP_FyyqlFKmIRWEdGXssUqUkstNK2XEHbshJqNouWM2bzZPeR8g9g5xLI-Ch2TYDYr40BlQOkjFVFFdkUhS6zDhoef0v35JZSlsAYFywUpkJWazQtsMnrWxEurCDpfMv245D4xL9_f6hVbfrbbRDc0C6GfZ-pF2gm32P8dAk9PSl89jekZtg24Szy52S9-XjW7XK1q9Pz9V8nTkmZJEF9LLkVjmnmAzGojEf2nqFQmimLQtOKwgK0DkQxyXHD4xn4IXmrGTAp0See13sUooY6j42OxvHmkF90qjPGvVJo75o8D8a3VQ-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Health Care Data Analytics – Comparative Study of Supervised Model</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>H. K., Mr. Madhu ; Ramesh, Dr. D.</creator><creatorcontrib>H. K., Mr. Madhu ; Ramesh, Dr. D. ; Research Scholar, Sri Siddhartha Institute of Technology, Tumkur (Karnataka), India ; Professor and HOD, Sri Siddhartha Academy of Higher Education, Tumkur (Karnataka), India</creatorcontrib><description>In the present pandemic situation, health care data is generated voluminously in an unstructured format posing challenge to technology in perspective of analysis, classification and prediction. The data generated is converted to structured format. Suitability of methodology keeping in mind low computational complexity and high accuracy is a major concern which has emerged as a problem in data science. In this research work real time heart disease data set is considered to evaluate the accuracy of six supervised methods –SVM (Support Vector Machine), KNN (K-Nearest Neighbor), GNB (Gaussian Naïve Bayes), LR (Logistic Regression), DT (Decision Tree) and RF (Random Forest). Analysis through ROC curve and confusion matrix predominantly justify RF classifier and LR gives efficient results compared to other methods. This is a preprocessing stage; every researcher has to perform before deciding the methodology to be considered for further processing.</description><identifier>ISSN: 2278-3075</identifier><identifier>EISSN: 2278-3075</identifier><identifier>DOI: 10.35940/ijitee.F9906.0511622</identifier><language>eng</language><ispartof>International journal of innovative technology and exploring engineering, 2022-05, Vol.11 (6), p.22-28</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1452-fed583a6cc615f9ae99b7ad6e44717a1fc760f60ecc0405176009d10d47318103</citedby><cites>FETCH-LOGICAL-c1452-fed583a6cc615f9ae99b7ad6e44717a1fc760f60ecc0405176009d10d47318103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>H. K., Mr. Madhu</creatorcontrib><creatorcontrib>Ramesh, Dr. D.</creatorcontrib><creatorcontrib>Research Scholar, Sri Siddhartha Institute of Technology, Tumkur (Karnataka), India</creatorcontrib><creatorcontrib>Professor and HOD, Sri Siddhartha Academy of Higher Education, Tumkur (Karnataka), India</creatorcontrib><title>Health Care Data Analytics – Comparative Study of Supervised Model</title><title>International journal of innovative technology and exploring engineering</title><description>In the present pandemic situation, health care data is generated voluminously in an unstructured format posing challenge to technology in perspective of analysis, classification and prediction. The data generated is converted to structured format. Suitability of methodology keeping in mind low computational complexity and high accuracy is a major concern which has emerged as a problem in data science. In this research work real time heart disease data set is considered to evaluate the accuracy of six supervised methods –SVM (Support Vector Machine), KNN (K-Nearest Neighbor), GNB (Gaussian Naïve Bayes), LR (Logistic Regression), DT (Decision Tree) and RF (Random Forest). Analysis through ROC curve and confusion matrix predominantly justify RF classifier and LR gives efficient results compared to other methods. This is a preprocessing stage; every researcher has to perform before deciding the methodology to be considered for further processing.</description><issn>2278-3075</issn><issn>2278-3075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpN0E1OwzAQBWALgURVegQkXyBhHP_FyyqlFKmIRWEdGXssUqUkstNK2XEHbshJqNouWM2bzZPeR8g9g5xLI-Ch2TYDYr40BlQOkjFVFFdkUhS6zDhoef0v35JZSlsAYFywUpkJWazQtsMnrWxEurCDpfMv245D4xL9_f6hVbfrbbRDc0C6GfZ-pF2gm32P8dAk9PSl89jekZtg24Szy52S9-XjW7XK1q9Pz9V8nTkmZJEF9LLkVjmnmAzGojEf2nqFQmimLQtOKwgK0DkQxyXHD4xn4IXmrGTAp0See13sUooY6j42OxvHmkF90qjPGvVJo75o8D8a3VQ-</recordid><startdate>20220530</startdate><enddate>20220530</enddate><creator>H. K., Mr. Madhu</creator><creator>Ramesh, Dr. D.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220530</creationdate><title>Health Care Data Analytics – Comparative Study of Supervised Model</title><author>H. K., Mr. Madhu ; Ramesh, Dr. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1452-fed583a6cc615f9ae99b7ad6e44717a1fc760f60ecc0405176009d10d47318103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>online_resources</toplevel><creatorcontrib>H. K., Mr. Madhu</creatorcontrib><creatorcontrib>Ramesh, Dr. D.</creatorcontrib><creatorcontrib>Research Scholar, Sri Siddhartha Institute of Technology, Tumkur (Karnataka), India</creatorcontrib><creatorcontrib>Professor and HOD, Sri Siddhartha Academy of Higher Education, Tumkur (Karnataka), India</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of innovative technology and exploring engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>H. K., Mr. Madhu</au><au>Ramesh, Dr. D.</au><aucorp>Research Scholar, Sri Siddhartha Institute of Technology, Tumkur (Karnataka), India</aucorp><aucorp>Professor and HOD, Sri Siddhartha Academy of Higher Education, Tumkur (Karnataka), India</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Health Care Data Analytics – Comparative Study of Supervised Model</atitle><jtitle>International journal of innovative technology and exploring engineering</jtitle><date>2022-05-30</date><risdate>2022</risdate><volume>11</volume><issue>6</issue><spage>22</spage><epage>28</epage><pages>22-28</pages><issn>2278-3075</issn><eissn>2278-3075</eissn><abstract>In the present pandemic situation, health care data is generated voluminously in an unstructured format posing challenge to technology in perspective of analysis, classification and prediction. The data generated is converted to structured format. Suitability of methodology keeping in mind low computational complexity and high accuracy is a major concern which has emerged as a problem in data science. In this research work real time heart disease data set is considered to evaluate the accuracy of six supervised methods –SVM (Support Vector Machine), KNN (K-Nearest Neighbor), GNB (Gaussian Naïve Bayes), LR (Logistic Regression), DT (Decision Tree) and RF (Random Forest). Analysis through ROC curve and confusion matrix predominantly justify RF classifier and LR gives efficient results compared to other methods. This is a preprocessing stage; every researcher has to perform before deciding the methodology to be considered for further processing.</abstract><doi>10.35940/ijitee.F9906.0511622</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2278-3075
ispartof International journal of innovative technology and exploring engineering, 2022-05, Vol.11 (6), p.22-28
issn 2278-3075
2278-3075
language eng
recordid cdi_crossref_primary_10_35940_ijitee_F9906_0511622
source EZB-FREE-00999 freely available EZB journals
title Health Care Data Analytics – Comparative Study of Supervised Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T01%3A03%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Health%20Care%20Data%20Analytics%20%E2%80%93%20Comparative%20Study%20of%20Supervised%20Model&rft.jtitle=International%20journal%20of%20innovative%20technology%20and%20exploring%20engineering&rft.au=H.%20K.,%20Mr.%20Madhu&rft.aucorp=Research%20Scholar,%20Sri%20Siddhartha%20Institute%20of%20Technology,%20Tumkur%20(Karnataka),%20India&rft.date=2022-05-30&rft.volume=11&rft.issue=6&rft.spage=22&rft.epage=28&rft.pages=22-28&rft.issn=2278-3075&rft.eissn=2278-3075&rft_id=info:doi/10.35940/ijitee.F9906.0511622&rft_dat=%3Ccrossref%3E10_35940_ijitee_F9906_0511622%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true