Health Care Data Analytics – Comparative Study of Supervised Model
In the present pandemic situation, health care data is generated voluminously in an unstructured format posing challenge to technology in perspective of analysis, classification and prediction. The data generated is converted to structured format. Suitability of methodology keeping in mind low compu...
Gespeichert in:
Veröffentlicht in: | International journal of innovative technology and exploring engineering 2022-05, Vol.11 (6), p.22-28 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 28 |
---|---|
container_issue | 6 |
container_start_page | 22 |
container_title | International journal of innovative technology and exploring engineering |
container_volume | 11 |
creator | H. K., Mr. Madhu Ramesh, Dr. D. |
description | In the present pandemic situation, health care data is generated voluminously in an unstructured format posing challenge to technology in perspective of analysis, classification and prediction. The data generated is converted to structured format. Suitability of methodology keeping in mind low computational complexity and high accuracy is a major concern which has emerged as a problem in data science. In this research work real time heart disease data set is considered to evaluate the accuracy of six supervised methods –SVM (Support Vector Machine), KNN (K-Nearest Neighbor), GNB (Gaussian Naïve Bayes), LR (Logistic Regression), DT (Decision Tree) and RF (Random Forest). Analysis through ROC curve and confusion matrix predominantly justify RF classifier and LR gives efficient results compared to other methods. This is a preprocessing stage; every researcher has to perform before deciding the methodology to be considered for further processing. |
doi_str_mv | 10.35940/ijitee.F9906.0511622 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_35940_ijitee_F9906_0511622</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_35940_ijitee_F9906_0511622</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1452-fed583a6cc615f9ae99b7ad6e44717a1fc760f60ecc0405176009d10d47318103</originalsourceid><addsrcrecordid>eNpN0E1OwzAQBWALgURVegQkXyBhHP_FyyqlFKmIRWEdGXssUqUkstNK2XEHbshJqNouWM2bzZPeR8g9g5xLI-Ch2TYDYr40BlQOkjFVFFdkUhS6zDhoef0v35JZSlsAYFywUpkJWazQtsMnrWxEurCDpfMv245D4xL9_f6hVbfrbbRDc0C6GfZ-pF2gm32P8dAk9PSl89jekZtg24Szy52S9-XjW7XK1q9Pz9V8nTkmZJEF9LLkVjmnmAzGojEf2nqFQmimLQtOKwgK0DkQxyXHD4xn4IXmrGTAp0See13sUooY6j42OxvHmkF90qjPGvVJo75o8D8a3VQ-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Health Care Data Analytics – Comparative Study of Supervised Model</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>H. K., Mr. Madhu ; Ramesh, Dr. D.</creator><creatorcontrib>H. K., Mr. Madhu ; Ramesh, Dr. D. ; Research Scholar, Sri Siddhartha Institute of Technology, Tumkur (Karnataka), India ; Professor and HOD, Sri Siddhartha Academy of Higher Education, Tumkur (Karnataka), India</creatorcontrib><description>In the present pandemic situation, health care data is generated voluminously in an unstructured format posing challenge to technology in perspective of analysis, classification and prediction. The data generated is converted to structured format. Suitability of methodology keeping in mind low computational complexity and high accuracy is a major concern which has emerged as a problem in data science. In this research work real time heart disease data set is considered to evaluate the accuracy of six supervised methods –SVM (Support Vector Machine), KNN (K-Nearest Neighbor), GNB (Gaussian Naïve Bayes), LR (Logistic Regression), DT (Decision Tree) and RF (Random Forest). Analysis through ROC curve and confusion matrix predominantly justify RF classifier and LR gives efficient results compared to other methods. This is a preprocessing stage; every researcher has to perform before deciding the methodology to be considered for further processing.</description><identifier>ISSN: 2278-3075</identifier><identifier>EISSN: 2278-3075</identifier><identifier>DOI: 10.35940/ijitee.F9906.0511622</identifier><language>eng</language><ispartof>International journal of innovative technology and exploring engineering, 2022-05, Vol.11 (6), p.22-28</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1452-fed583a6cc615f9ae99b7ad6e44717a1fc760f60ecc0405176009d10d47318103</citedby><cites>FETCH-LOGICAL-c1452-fed583a6cc615f9ae99b7ad6e44717a1fc760f60ecc0405176009d10d47318103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>H. K., Mr. Madhu</creatorcontrib><creatorcontrib>Ramesh, Dr. D.</creatorcontrib><creatorcontrib>Research Scholar, Sri Siddhartha Institute of Technology, Tumkur (Karnataka), India</creatorcontrib><creatorcontrib>Professor and HOD, Sri Siddhartha Academy of Higher Education, Tumkur (Karnataka), India</creatorcontrib><title>Health Care Data Analytics – Comparative Study of Supervised Model</title><title>International journal of innovative technology and exploring engineering</title><description>In the present pandemic situation, health care data is generated voluminously in an unstructured format posing challenge to technology in perspective of analysis, classification and prediction. The data generated is converted to structured format. Suitability of methodology keeping in mind low computational complexity and high accuracy is a major concern which has emerged as a problem in data science. In this research work real time heart disease data set is considered to evaluate the accuracy of six supervised methods –SVM (Support Vector Machine), KNN (K-Nearest Neighbor), GNB (Gaussian Naïve Bayes), LR (Logistic Regression), DT (Decision Tree) and RF (Random Forest). Analysis through ROC curve and confusion matrix predominantly justify RF classifier and LR gives efficient results compared to other methods. This is a preprocessing stage; every researcher has to perform before deciding the methodology to be considered for further processing.</description><issn>2278-3075</issn><issn>2278-3075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpN0E1OwzAQBWALgURVegQkXyBhHP_FyyqlFKmIRWEdGXssUqUkstNK2XEHbshJqNouWM2bzZPeR8g9g5xLI-Ch2TYDYr40BlQOkjFVFFdkUhS6zDhoef0v35JZSlsAYFywUpkJWazQtsMnrWxEurCDpfMv245D4xL9_f6hVbfrbbRDc0C6GfZ-pF2gm32P8dAk9PSl89jekZtg24Szy52S9-XjW7XK1q9Pz9V8nTkmZJEF9LLkVjmnmAzGojEf2nqFQmimLQtOKwgK0DkQxyXHD4xn4IXmrGTAp0See13sUooY6j42OxvHmkF90qjPGvVJo75o8D8a3VQ-</recordid><startdate>20220530</startdate><enddate>20220530</enddate><creator>H. K., Mr. Madhu</creator><creator>Ramesh, Dr. D.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220530</creationdate><title>Health Care Data Analytics – Comparative Study of Supervised Model</title><author>H. K., Mr. Madhu ; Ramesh, Dr. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1452-fed583a6cc615f9ae99b7ad6e44717a1fc760f60ecc0405176009d10d47318103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>online_resources</toplevel><creatorcontrib>H. K., Mr. Madhu</creatorcontrib><creatorcontrib>Ramesh, Dr. D.</creatorcontrib><creatorcontrib>Research Scholar, Sri Siddhartha Institute of Technology, Tumkur (Karnataka), India</creatorcontrib><creatorcontrib>Professor and HOD, Sri Siddhartha Academy of Higher Education, Tumkur (Karnataka), India</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of innovative technology and exploring engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>H. K., Mr. Madhu</au><au>Ramesh, Dr. D.</au><aucorp>Research Scholar, Sri Siddhartha Institute of Technology, Tumkur (Karnataka), India</aucorp><aucorp>Professor and HOD, Sri Siddhartha Academy of Higher Education, Tumkur (Karnataka), India</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Health Care Data Analytics – Comparative Study of Supervised Model</atitle><jtitle>International journal of innovative technology and exploring engineering</jtitle><date>2022-05-30</date><risdate>2022</risdate><volume>11</volume><issue>6</issue><spage>22</spage><epage>28</epage><pages>22-28</pages><issn>2278-3075</issn><eissn>2278-3075</eissn><abstract>In the present pandemic situation, health care data is generated voluminously in an unstructured format posing challenge to technology in perspective of analysis, classification and prediction. The data generated is converted to structured format. Suitability of methodology keeping in mind low computational complexity and high accuracy is a major concern which has emerged as a problem in data science. In this research work real time heart disease data set is considered to evaluate the accuracy of six supervised methods –SVM (Support Vector Machine), KNN (K-Nearest Neighbor), GNB (Gaussian Naïve Bayes), LR (Logistic Regression), DT (Decision Tree) and RF (Random Forest). Analysis through ROC curve and confusion matrix predominantly justify RF classifier and LR gives efficient results compared to other methods. This is a preprocessing stage; every researcher has to perform before deciding the methodology to be considered for further processing.</abstract><doi>10.35940/ijitee.F9906.0511622</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2278-3075 |
ispartof | International journal of innovative technology and exploring engineering, 2022-05, Vol.11 (6), p.22-28 |
issn | 2278-3075 2278-3075 |
language | eng |
recordid | cdi_crossref_primary_10_35940_ijitee_F9906_0511622 |
source | EZB-FREE-00999 freely available EZB journals |
title | Health Care Data Analytics – Comparative Study of Supervised Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T01%3A03%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Health%20Care%20Data%20Analytics%20%E2%80%93%20Comparative%20Study%20of%20Supervised%20Model&rft.jtitle=International%20journal%20of%20innovative%20technology%20and%20exploring%20engineering&rft.au=H.%20K.,%20Mr.%20Madhu&rft.aucorp=Research%20Scholar,%20Sri%20Siddhartha%20Institute%20of%20Technology,%20Tumkur%20(Karnataka),%20India&rft.date=2022-05-30&rft.volume=11&rft.issue=6&rft.spage=22&rft.epage=28&rft.pages=22-28&rft.issn=2278-3075&rft.eissn=2278-3075&rft_id=info:doi/10.35940/ijitee.F9906.0511622&rft_dat=%3Ccrossref%3E10_35940_ijitee_F9906_0511622%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |