A Case Study on the Diminishing Popularity of Encoder-Only Architectures in Machine Learning Models
This paper examines the shift from encoder-only to decoder and encoder-decoder models in machine learning, highlighting the decline in popularity of encoder-only architectures. It explores the reasons behind this trend, such as the advancements in decoder models that offer superior generative capabi...
Gespeichert in:
Veröffentlicht in: | International journal of innovative technology and exploring engineering 2024-03, Vol.13 (4), p.22-27 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 27 |
---|---|
container_issue | 4 |
container_start_page | 22 |
container_title | International journal of innovative technology and exploring engineering |
container_volume | 13 |
creator | Sridhar, Praveen Kumar Srinivasan, Nitin Kumar, Adithyan Arun Rajendran, Gowthamaraj Perumalsamy, Kishore Kumar |
description | This paper examines the shift from encoder-only to decoder and encoder-decoder models in machine learning, highlighting the decline in popularity of encoder-only architectures. It explores the reasons behind this trend, such as the advancements in decoder models that offer superior generative capabilities, flexibility across various domains, and enhancements in unsupervised learning techniques. The study also discusses the role of prompting techniques in simplifying model architectures and enhancing model versatility. By analyzing the evolution, applications, and shifting preferences within the research community and industry, this paper aims to provide insights into the changing landscape of machine learning model architectures. |
doi_str_mv | 10.35940/ijitee.D9827.13040324 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_35940_ijitee_D9827_13040324</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_35940_ijitee_D9827_13040324</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1004-53c288f32d5f8b7f9644b42ea5448ce110aafbd0c0d6f44eb67b7b57d717c5b03</originalsourceid><addsrcrecordid>eNpNkN1KAzEQhYMoWGpfQfICWyd_m-xlaasWWiqo10uSTWzKNluS7UXf3rVV8GqGOWfOgQ-hRwJTJioOT2Efeuemi0pROSUMODDKb9CIUqkKBlLc_tvv0STnPQAQxokqqxGyMzzX2eH3_tSccRdxv3N4EQ4hhrwL8Qu_dcdTq1PoB9XjZbRd41Kxje0Zz5LdDeW2PyWXcYh4o4dDdHjtdIo_z5vB3OYHdOd1m93kd47R5_PyY_5arLcvq_lsXVgCwAvBLFXKM9oIr4z0Vcm54dRpwbmyjhDQ2psGLDSl59yZUhpphGwkkVYYYGNUXnNt6nJOztfHFA46nWsC9YVWfaVVX2jVf7TYN9wwYAo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Case Study on the Diminishing Popularity of Encoder-Only Architectures in Machine Learning Models</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Sridhar, Praveen Kumar ; Srinivasan, Nitin ; Kumar, Adithyan Arun ; Rajendran, Gowthamaraj ; Perumalsamy, Kishore Kumar</creator><creatorcontrib>Sridhar, Praveen Kumar ; Srinivasan, Nitin ; Kumar, Adithyan Arun ; Rajendran, Gowthamaraj ; Perumalsamy, Kishore Kumar ; Department of Information Security, Carnegie Mellon University, San Jose, United States ; Department of Computer Science, Carnegie Mellon University, San Jose, United States ; Department of Computer Science, University of Massachusetts Amherst, Sunnyvale, United States ; Department of Data Science, Northeastern University, San Jose, United States</creatorcontrib><description>This paper examines the shift from encoder-only to decoder and encoder-decoder models in machine learning, highlighting the decline in popularity of encoder-only architectures. It explores the reasons behind this trend, such as the advancements in decoder models that offer superior generative capabilities, flexibility across various domains, and enhancements in unsupervised learning techniques. The study also discusses the role of prompting techniques in simplifying model architectures and enhancing model versatility. By analyzing the evolution, applications, and shifting preferences within the research community and industry, this paper aims to provide insights into the changing landscape of machine learning model architectures.</description><identifier>ISSN: 2278-3075</identifier><identifier>EISSN: 2278-3075</identifier><identifier>DOI: 10.35940/ijitee.D9827.13040324</identifier><language>eng</language><ispartof>International journal of innovative technology and exploring engineering, 2024-03, Vol.13 (4), p.22-27</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1004-53c288f32d5f8b7f9644b42ea5448ce110aafbd0c0d6f44eb67b7b57d717c5b03</citedby><cites>FETCH-LOGICAL-c1004-53c288f32d5f8b7f9644b42ea5448ce110aafbd0c0d6f44eb67b7b57d717c5b03</cites><orcidid>0000-0001-9790-2657 ; 0009-0001-6472-4441 ; 0009-0001-6486-1614 ; 0000-0001-9422-3907 ; 0009-0009-5661-7644</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sridhar, Praveen Kumar</creatorcontrib><creatorcontrib>Srinivasan, Nitin</creatorcontrib><creatorcontrib>Kumar, Adithyan Arun</creatorcontrib><creatorcontrib>Rajendran, Gowthamaraj</creatorcontrib><creatorcontrib>Perumalsamy, Kishore Kumar</creatorcontrib><creatorcontrib>Department of Information Security, Carnegie Mellon University, San Jose, United States</creatorcontrib><creatorcontrib>Department of Computer Science, Carnegie Mellon University, San Jose, United States</creatorcontrib><creatorcontrib>Department of Computer Science, University of Massachusetts Amherst, Sunnyvale, United States</creatorcontrib><creatorcontrib>Department of Data Science, Northeastern University, San Jose, United States</creatorcontrib><title>A Case Study on the Diminishing Popularity of Encoder-Only Architectures in Machine Learning Models</title><title>International journal of innovative technology and exploring engineering</title><description>This paper examines the shift from encoder-only to decoder and encoder-decoder models in machine learning, highlighting the decline in popularity of encoder-only architectures. It explores the reasons behind this trend, such as the advancements in decoder models that offer superior generative capabilities, flexibility across various domains, and enhancements in unsupervised learning techniques. The study also discusses the role of prompting techniques in simplifying model architectures and enhancing model versatility. By analyzing the evolution, applications, and shifting preferences within the research community and industry, this paper aims to provide insights into the changing landscape of machine learning model architectures.</description><issn>2278-3075</issn><issn>2278-3075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkN1KAzEQhYMoWGpfQfICWyd_m-xlaasWWiqo10uSTWzKNluS7UXf3rVV8GqGOWfOgQ-hRwJTJioOT2Efeuemi0pROSUMODDKb9CIUqkKBlLc_tvv0STnPQAQxokqqxGyMzzX2eH3_tSccRdxv3N4EQ4hhrwL8Qu_dcdTq1PoB9XjZbRd41Kxje0Zz5LdDeW2PyWXcYh4o4dDdHjtdIo_z5vB3OYHdOd1m93kd47R5_PyY_5arLcvq_lsXVgCwAvBLFXKM9oIr4z0Vcm54dRpwbmyjhDQ2psGLDSl59yZUhpphGwkkVYYYGNUXnNt6nJOztfHFA46nWsC9YVWfaVVX2jVf7TYN9wwYAo</recordid><startdate>20240330</startdate><enddate>20240330</enddate><creator>Sridhar, Praveen Kumar</creator><creator>Srinivasan, Nitin</creator><creator>Kumar, Adithyan Arun</creator><creator>Rajendran, Gowthamaraj</creator><creator>Perumalsamy, Kishore Kumar</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9790-2657</orcidid><orcidid>https://orcid.org/0009-0001-6472-4441</orcidid><orcidid>https://orcid.org/0009-0001-6486-1614</orcidid><orcidid>https://orcid.org/0000-0001-9422-3907</orcidid><orcidid>https://orcid.org/0009-0009-5661-7644</orcidid></search><sort><creationdate>20240330</creationdate><title>A Case Study on the Diminishing Popularity of Encoder-Only Architectures in Machine Learning Models</title><author>Sridhar, Praveen Kumar ; Srinivasan, Nitin ; Kumar, Adithyan Arun ; Rajendran, Gowthamaraj ; Perumalsamy, Kishore Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1004-53c288f32d5f8b7f9644b42ea5448ce110aafbd0c0d6f44eb67b7b57d717c5b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Sridhar, Praveen Kumar</creatorcontrib><creatorcontrib>Srinivasan, Nitin</creatorcontrib><creatorcontrib>Kumar, Adithyan Arun</creatorcontrib><creatorcontrib>Rajendran, Gowthamaraj</creatorcontrib><creatorcontrib>Perumalsamy, Kishore Kumar</creatorcontrib><creatorcontrib>Department of Information Security, Carnegie Mellon University, San Jose, United States</creatorcontrib><creatorcontrib>Department of Computer Science, Carnegie Mellon University, San Jose, United States</creatorcontrib><creatorcontrib>Department of Computer Science, University of Massachusetts Amherst, Sunnyvale, United States</creatorcontrib><creatorcontrib>Department of Data Science, Northeastern University, San Jose, United States</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of innovative technology and exploring engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sridhar, Praveen Kumar</au><au>Srinivasan, Nitin</au><au>Kumar, Adithyan Arun</au><au>Rajendran, Gowthamaraj</au><au>Perumalsamy, Kishore Kumar</au><aucorp>Department of Information Security, Carnegie Mellon University, San Jose, United States</aucorp><aucorp>Department of Computer Science, Carnegie Mellon University, San Jose, United States</aucorp><aucorp>Department of Computer Science, University of Massachusetts Amherst, Sunnyvale, United States</aucorp><aucorp>Department of Data Science, Northeastern University, San Jose, United States</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Case Study on the Diminishing Popularity of Encoder-Only Architectures in Machine Learning Models</atitle><jtitle>International journal of innovative technology and exploring engineering</jtitle><date>2024-03-30</date><risdate>2024</risdate><volume>13</volume><issue>4</issue><spage>22</spage><epage>27</epage><pages>22-27</pages><issn>2278-3075</issn><eissn>2278-3075</eissn><abstract>This paper examines the shift from encoder-only to decoder and encoder-decoder models in machine learning, highlighting the decline in popularity of encoder-only architectures. It explores the reasons behind this trend, such as the advancements in decoder models that offer superior generative capabilities, flexibility across various domains, and enhancements in unsupervised learning techniques. The study also discusses the role of prompting techniques in simplifying model architectures and enhancing model versatility. By analyzing the evolution, applications, and shifting preferences within the research community and industry, this paper aims to provide insights into the changing landscape of machine learning model architectures.</abstract><doi>10.35940/ijitee.D9827.13040324</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-9790-2657</orcidid><orcidid>https://orcid.org/0009-0001-6472-4441</orcidid><orcidid>https://orcid.org/0009-0001-6486-1614</orcidid><orcidid>https://orcid.org/0000-0001-9422-3907</orcidid><orcidid>https://orcid.org/0009-0009-5661-7644</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2278-3075 |
ispartof | International journal of innovative technology and exploring engineering, 2024-03, Vol.13 (4), p.22-27 |
issn | 2278-3075 2278-3075 |
language | eng |
recordid | cdi_crossref_primary_10_35940_ijitee_D9827_13040324 |
source | EZB-FREE-00999 freely available EZB journals |
title | A Case Study on the Diminishing Popularity of Encoder-Only Architectures in Machine Learning Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T07%3A22%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Case%20Study%20on%20the%20Diminishing%20Popularity%20of%20Encoder-Only%20Architectures%20in%20Machine%20Learning%20Models&rft.jtitle=International%20journal%20of%20innovative%20technology%20and%20exploring%20engineering&rft.au=Sridhar,%20Praveen%20Kumar&rft.aucorp=Department%20of%20Information%20Security,%20Carnegie%20Mellon%20University,%20San%20Jose,%20United%20States&rft.date=2024-03-30&rft.volume=13&rft.issue=4&rft.spage=22&rft.epage=27&rft.pages=22-27&rft.issn=2278-3075&rft.eissn=2278-3075&rft_id=info:doi/10.35940/ijitee.D9827.13040324&rft_dat=%3Ccrossref%3E10_35940_ijitee_D9827_13040324%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |