Photocatalytic Performances and Antibacterial Activities of Nano-Zno Derived By Cetrimide-Based Co-Precipitation Method by Varying Solvents

In this work, zinc oxide nanoparticles have been synthesized by cost-effective and based on the efficient cetrimide and varying solvents are using the method of co-precipitation annealing at 350 C. The resultant powder samples were characterized well by means of XRD, SEM, FT-IR, PL and UV-visible D...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of innovative technology and exploring engineering 2019-12, Vol.9 (2), p.930-938
Hauptverfasser: Mydeen, S. Sheik, Kottaisamy, M., Vasantha, V.S
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 938
container_issue 2
container_start_page 930
container_title International journal of innovative technology and exploring engineering
container_volume 9
creator Mydeen, S. Sheik
Kottaisamy, M.
Vasantha, V.S
description In this work, zinc oxide nanoparticles have been synthesized by cost-effective and based on the efficient cetrimide and varying solvents are using the method of co-precipitation annealing at 350 C. The resultant powder samples were characterized well by means of XRD, SEM, FT-IR, PL and UV-visible DRS spectroscopy. Among them, XRD exhibits ZnO has the structure of hexagonal wurtzite with a preferred orientation of 101 planes. It is noted in ZnO represented in SEM images have different solvents and cetrimide has a strong influence on the morphology of ZnO nanostructures that are to be sized are 50nm, 70nm, 90nm 100nm. It confirms that the changes in the band-gap from UV-vis DRS data. The presence of Zn-O confirms various functional groups decomposed in the sample from FTIR data. The PL study states that the emission band available at approximately 410nm and checks the recombination level shows low, further, it correlates with good photocatalytic properties. The sunlight measured by Lux meter and dye degradation studies is done by a simple aeration photocatalytic technique represents 95% degradations and under UV light is 85%. Besides, the scavengers of the responsive species of during the degradation were additionally examined for photocatalytic mechanism. An antibacterial activity is enhanced significantly, which is based on the attribution of Nano features of ZnO nanostructures for p. aeruginosa bacteria. Thus, this study paved the way for potential applications of photocatalytic and antibacterial activities.
doi_str_mv 10.35940/ijitee.B7145.129219
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_35940_ijitee_B7145_129219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_35940_ijitee_B7145_129219</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1939-12a633a7676bc3c05e7b85458b245a7004de804095eb4ee86d1b336273a5fff53</originalsourceid><addsrcrecordid>eNpNkEtqwzAYhEVpoSHNDbrQBZxKlmTZy8R9QtoG-lh0Y2T5V6PgSEESAZ-hl65JuuhqhhkYhg-ha0rmTFSc3NitTQDzpaRczGle5bQ6Q5M8l2XGiBTn__wlmsW4JYRQxmlZVBP0s9745LVKqh-S1XgNwfiwU05DxMp1eOGSbZVOEKzq8UIne7DJjqU3-EU5n305j2_H9gAdXg64hhTsznaQLVUco9pn6wDa7m1SyXqHnyFtfIfbAX-qMFj3jd98fwCX4hW6MKqPMPvTKfq4v3uvH7PV68NTvVhlmlasymiuCsaULGTRaqaJANmWgouyzblQkhDeQUk4qQS0HKAsOtoyVuSSKWGMEWyK-GlXBx9jANPsx8vjmYaS5si0OTFtjkybE1P2C4Wfbe0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Photocatalytic Performances and Antibacterial Activities of Nano-Zno Derived By Cetrimide-Based Co-Precipitation Method by Varying Solvents</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Mydeen, S. Sheik ; Kottaisamy, M. ; Vasantha, V.S</creator><creatorcontrib>Mydeen, S. Sheik ; Kottaisamy, M. ; Vasantha, V.S ; Department of Chemistry, Thiagarajar College Engineering, Madurai, Tamilnadu, India ; School of Chemistry, Madurai Kamaraj University, Palkalai Nagar, Madurai, Tamilnadu, India ; Department of Chemistry, Sethu Institute of Technology, Pulloor, Kariapatti, Tamilnadu, India</creatorcontrib><description>In this work, zinc oxide nanoparticles have been synthesized by cost-effective and based on the efficient cetrimide and varying solvents are using the method of co-precipitation annealing at 350 C. The resultant powder samples were characterized well by means of XRD, SEM, FT-IR, PL and UV-visible DRS spectroscopy. Among them, XRD exhibits ZnO has the structure of hexagonal wurtzite with a preferred orientation of 101 planes. It is noted in ZnO represented in SEM images have different solvents and cetrimide has a strong influence on the morphology of ZnO nanostructures that are to be sized are 50nm, 70nm, 90nm 100nm. It confirms that the changes in the band-gap from UV-vis DRS data. The presence of Zn-O confirms various functional groups decomposed in the sample from FTIR data. The PL study states that the emission band available at approximately 410nm and checks the recombination level shows low, further, it correlates with good photocatalytic properties. The sunlight measured by Lux meter and dye degradation studies is done by a simple aeration photocatalytic technique represents 95% degradations and under UV light is 85%. Besides, the scavengers of the responsive species of during the degradation were additionally examined for photocatalytic mechanism. An antibacterial activity is enhanced significantly, which is based on the attribution of Nano features of ZnO nanostructures for p. aeruginosa bacteria. Thus, this study paved the way for potential applications of photocatalytic and antibacterial activities.</description><identifier>ISSN: 2278-3075</identifier><identifier>EISSN: 2278-3075</identifier><identifier>DOI: 10.35940/ijitee.B7145.129219</identifier><language>eng</language><ispartof>International journal of innovative technology and exploring engineering, 2019-12, Vol.9 (2), p.930-938</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1939-12a633a7676bc3c05e7b85458b245a7004de804095eb4ee86d1b336273a5fff53</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Mydeen, S. Sheik</creatorcontrib><creatorcontrib>Kottaisamy, M.</creatorcontrib><creatorcontrib>Vasantha, V.S</creatorcontrib><creatorcontrib>Department of Chemistry, Thiagarajar College Engineering, Madurai, Tamilnadu, India</creatorcontrib><creatorcontrib>School of Chemistry, Madurai Kamaraj University, Palkalai Nagar, Madurai, Tamilnadu, India</creatorcontrib><creatorcontrib>Department of Chemistry, Sethu Institute of Technology, Pulloor, Kariapatti, Tamilnadu, India</creatorcontrib><title>Photocatalytic Performances and Antibacterial Activities of Nano-Zno Derived By Cetrimide-Based Co-Precipitation Method by Varying Solvents</title><title>International journal of innovative technology and exploring engineering</title><description>In this work, zinc oxide nanoparticles have been synthesized by cost-effective and based on the efficient cetrimide and varying solvents are using the method of co-precipitation annealing at 350 C. The resultant powder samples were characterized well by means of XRD, SEM, FT-IR, PL and UV-visible DRS spectroscopy. Among them, XRD exhibits ZnO has the structure of hexagonal wurtzite with a preferred orientation of 101 planes. It is noted in ZnO represented in SEM images have different solvents and cetrimide has a strong influence on the morphology of ZnO nanostructures that are to be sized are 50nm, 70nm, 90nm 100nm. It confirms that the changes in the band-gap from UV-vis DRS data. The presence of Zn-O confirms various functional groups decomposed in the sample from FTIR data. The PL study states that the emission band available at approximately 410nm and checks the recombination level shows low, further, it correlates with good photocatalytic properties. The sunlight measured by Lux meter and dye degradation studies is done by a simple aeration photocatalytic technique represents 95% degradations and under UV light is 85%. Besides, the scavengers of the responsive species of during the degradation were additionally examined for photocatalytic mechanism. An antibacterial activity is enhanced significantly, which is based on the attribution of Nano features of ZnO nanostructures for p. aeruginosa bacteria. Thus, this study paved the way for potential applications of photocatalytic and antibacterial activities.</description><issn>2278-3075</issn><issn>2278-3075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpNkEtqwzAYhEVpoSHNDbrQBZxKlmTZy8R9QtoG-lh0Y2T5V6PgSEESAZ-hl65JuuhqhhkYhg-ha0rmTFSc3NitTQDzpaRczGle5bQ6Q5M8l2XGiBTn__wlmsW4JYRQxmlZVBP0s9745LVKqh-S1XgNwfiwU05DxMp1eOGSbZVOEKzq8UIne7DJjqU3-EU5n305j2_H9gAdXg64hhTsznaQLVUco9pn6wDa7m1SyXqHnyFtfIfbAX-qMFj3jd98fwCX4hW6MKqPMPvTKfq4v3uvH7PV68NTvVhlmlasymiuCsaULGTRaqaJANmWgouyzblQkhDeQUk4qQS0HKAsOtoyVuSSKWGMEWyK-GlXBx9jANPsx8vjmYaS5si0OTFtjkybE1P2C4Wfbe0</recordid><startdate>20191230</startdate><enddate>20191230</enddate><creator>Mydeen, S. Sheik</creator><creator>Kottaisamy, M.</creator><creator>Vasantha, V.S</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20191230</creationdate><title>Photocatalytic Performances and Antibacterial Activities of Nano-Zno Derived By Cetrimide-Based Co-Precipitation Method by Varying Solvents</title><author>Mydeen, S. Sheik ; Kottaisamy, M. ; Vasantha, V.S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1939-12a633a7676bc3c05e7b85458b245a7004de804095eb4ee86d1b336273a5fff53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Mydeen, S. Sheik</creatorcontrib><creatorcontrib>Kottaisamy, M.</creatorcontrib><creatorcontrib>Vasantha, V.S</creatorcontrib><creatorcontrib>Department of Chemistry, Thiagarajar College Engineering, Madurai, Tamilnadu, India</creatorcontrib><creatorcontrib>School of Chemistry, Madurai Kamaraj University, Palkalai Nagar, Madurai, Tamilnadu, India</creatorcontrib><creatorcontrib>Department of Chemistry, Sethu Institute of Technology, Pulloor, Kariapatti, Tamilnadu, India</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of innovative technology and exploring engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mydeen, S. Sheik</au><au>Kottaisamy, M.</au><au>Vasantha, V.S</au><aucorp>Department of Chemistry, Thiagarajar College Engineering, Madurai, Tamilnadu, India</aucorp><aucorp>School of Chemistry, Madurai Kamaraj University, Palkalai Nagar, Madurai, Tamilnadu, India</aucorp><aucorp>Department of Chemistry, Sethu Institute of Technology, Pulloor, Kariapatti, Tamilnadu, India</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photocatalytic Performances and Antibacterial Activities of Nano-Zno Derived By Cetrimide-Based Co-Precipitation Method by Varying Solvents</atitle><jtitle>International journal of innovative technology and exploring engineering</jtitle><date>2019-12-30</date><risdate>2019</risdate><volume>9</volume><issue>2</issue><spage>930</spage><epage>938</epage><pages>930-938</pages><issn>2278-3075</issn><eissn>2278-3075</eissn><abstract>In this work, zinc oxide nanoparticles have been synthesized by cost-effective and based on the efficient cetrimide and varying solvents are using the method of co-precipitation annealing at 350 C. The resultant powder samples were characterized well by means of XRD, SEM, FT-IR, PL and UV-visible DRS spectroscopy. Among them, XRD exhibits ZnO has the structure of hexagonal wurtzite with a preferred orientation of 101 planes. It is noted in ZnO represented in SEM images have different solvents and cetrimide has a strong influence on the morphology of ZnO nanostructures that are to be sized are 50nm, 70nm, 90nm 100nm. It confirms that the changes in the band-gap from UV-vis DRS data. The presence of Zn-O confirms various functional groups decomposed in the sample from FTIR data. The PL study states that the emission band available at approximately 410nm and checks the recombination level shows low, further, it correlates with good photocatalytic properties. The sunlight measured by Lux meter and dye degradation studies is done by a simple aeration photocatalytic technique represents 95% degradations and under UV light is 85%. Besides, the scavengers of the responsive species of during the degradation were additionally examined for photocatalytic mechanism. An antibacterial activity is enhanced significantly, which is based on the attribution of Nano features of ZnO nanostructures for p. aeruginosa bacteria. Thus, this study paved the way for potential applications of photocatalytic and antibacterial activities.</abstract><doi>10.35940/ijitee.B7145.129219</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2278-3075
ispartof International journal of innovative technology and exploring engineering, 2019-12, Vol.9 (2), p.930-938
issn 2278-3075
2278-3075
language eng
recordid cdi_crossref_primary_10_35940_ijitee_B7145_129219
source EZB-FREE-00999 freely available EZB journals
title Photocatalytic Performances and Antibacterial Activities of Nano-Zno Derived By Cetrimide-Based Co-Precipitation Method by Varying Solvents
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T22%3A19%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photocatalytic%20Performances%20and%20Antibacterial%20Activities%20of%20Nano-Zno%20Derived%20By%20Cetrimide-Based%20Co-Precipitation%20Method%20by%20Varying%20Solvents&rft.jtitle=International%20journal%20of%20innovative%20technology%20and%20exploring%20engineering&rft.au=Mydeen,%20S.%20Sheik&rft.aucorp=Department%20of%20Chemistry,%20Thiagarajar%20College%20Engineering,%20Madurai,%20Tamilnadu,%20India&rft.date=2019-12-30&rft.volume=9&rft.issue=2&rft.spage=930&rft.epage=938&rft.pages=930-938&rft.issn=2278-3075&rft.eissn=2278-3075&rft_id=info:doi/10.35940/ijitee.B7145.129219&rft_dat=%3Ccrossref%3E10_35940_ijitee_B7145_129219%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true