Estimation of Level of Liver Damage Due to Cancer using Deep Convolutional Neural Network in CT images
The lesion size estimation is essential need while diagnosing the liver cancer and treatment scenario. The lesion segmentation suing conventional methods such as region growing, threshold based segmentation provide limited performance due to variations in light intensity distribution throughout the...
Gespeichert in:
Veröffentlicht in: | International journal of innovative technology and exploring engineering 2019-11, Vol.9 (1), p.3761-3764 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3764 |
---|---|
container_issue | 1 |
container_start_page | 3761 |
container_title | International journal of innovative technology and exploring engineering |
container_volume | 9 |
creator | Vanmore, Mr. Swapnil V. Chougule, Dr. S. R. |
description | The lesion size estimation is essential need while diagnosing the liver cancer and treatment scenario. The lesion segmentation suing conventional methods such as region growing, threshold based segmentation provide limited performance due to variations in light intensity distribution throughout the image. The deep learning approach used in this paper consist of input dataset of liver abdominal images along with labelled set combination of variety of liver regions and lesion structures. The care has been taken while constructing the dataset such that, the lesion due to cancer in liver of particular image should have at least one matching structure should be present in one of the labelled images. The 3 fold validation is done to evaluate the performance in which total 140 images of liver cancer are used for training, 30 images for validation and 30 images for testing. The result shows 98.5% accuracy for lesion classification. The area of lesion is compared to total area of liver in terms of pixels to estimate the total area occupied by the lesion and amount of liver damage. |
doi_str_mv | 10.35940/ijitee.A4818.119119 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_35940_ijitee_A4818_119119</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_35940_ijitee_A4818_119119</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2129-7ba8a6aa9a8e1114f02caf0c7f80d804b7d8dd43d6e3d6e5d9452c6ea76cd1273</originalsourceid><addsrcrecordid>eNpNkM1qwzAQhEVpoSHNG_SgF3AqybIlH4OT_kBoL-nZbKRVUOpYQbJT-vZNnB4Ku8ywsMPwEfLI2TwvKsme_N73iPOF1FzPOa_Oc0MmQiid5UwVt__8PZmltGeM8VxyXVYT4lap9wfofehocHSNJ2xH408Y6RIOsEO6HJD2gdbQmfNxSL7b0SXikdahO4V2uHxDS99xiKP03yF-Ud_RekP9JSE9kDsHbcLZn07J5_NqU79m64-Xt3qxzozgosrUFjSUABVo5JxLx4QBx4xymlnN5FZZba3MbYmXLWwlC2FKBFUay4XKp0Rec00MKUV0zTGeG8SfhrNmxNVccTUjruaKK_8FqRhgJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Estimation of Level of Liver Damage Due to Cancer using Deep Convolutional Neural Network in CT images</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Vanmore, Mr. Swapnil V. ; Chougule, Dr. S. R.</creator><creatorcontrib>Vanmore, Mr. Swapnil V. ; Chougule, Dr. S. R. ; Research Scholar, Department Electronics &Telecommunication Engineering. Sanjeevan Engineering Technology & Institute ,Panhala .Shivaji University Kolhapur, India ; Department Electronics &Telecommunication Engineering, Kolhapur Institute of Technology College of Engineering Kolhapur,India</creatorcontrib><description>The lesion size estimation is essential need while diagnosing the liver cancer and treatment scenario. The lesion segmentation suing conventional methods such as region growing, threshold based segmentation provide limited performance due to variations in light intensity distribution throughout the image. The deep learning approach used in this paper consist of input dataset of liver abdominal images along with labelled set combination of variety of liver regions and lesion structures. The care has been taken while constructing the dataset such that, the lesion due to cancer in liver of particular image should have at least one matching structure should be present in one of the labelled images. The 3 fold validation is done to evaluate the performance in which total 140 images of liver cancer are used for training, 30 images for validation and 30 images for testing. The result shows 98.5% accuracy for lesion classification. The area of lesion is compared to total area of liver in terms of pixels to estimate the total area occupied by the lesion and amount of liver damage.</description><identifier>ISSN: 2278-3075</identifier><identifier>EISSN: 2278-3075</identifier><identifier>DOI: 10.35940/ijitee.A4818.119119</identifier><language>eng</language><ispartof>International journal of innovative technology and exploring engineering, 2019-11, Vol.9 (1), p.3761-3764</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2129-7ba8a6aa9a8e1114f02caf0c7f80d804b7d8dd43d6e3d6e5d9452c6ea76cd1273</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Vanmore, Mr. Swapnil V.</creatorcontrib><creatorcontrib>Chougule, Dr. S. R.</creatorcontrib><creatorcontrib>Research Scholar, Department Electronics &Telecommunication Engineering. Sanjeevan Engineering Technology & Institute ,Panhala .Shivaji University Kolhapur, India</creatorcontrib><creatorcontrib>Department Electronics &Telecommunication Engineering, Kolhapur Institute of Technology College of Engineering Kolhapur,India</creatorcontrib><title>Estimation of Level of Liver Damage Due to Cancer using Deep Convolutional Neural Network in CT images</title><title>International journal of innovative technology and exploring engineering</title><description>The lesion size estimation is essential need while diagnosing the liver cancer and treatment scenario. The lesion segmentation suing conventional methods such as region growing, threshold based segmentation provide limited performance due to variations in light intensity distribution throughout the image. The deep learning approach used in this paper consist of input dataset of liver abdominal images along with labelled set combination of variety of liver regions and lesion structures. The care has been taken while constructing the dataset such that, the lesion due to cancer in liver of particular image should have at least one matching structure should be present in one of the labelled images. The 3 fold validation is done to evaluate the performance in which total 140 images of liver cancer are used for training, 30 images for validation and 30 images for testing. The result shows 98.5% accuracy for lesion classification. The area of lesion is compared to total area of liver in terms of pixels to estimate the total area occupied by the lesion and amount of liver damage.</description><issn>2278-3075</issn><issn>2278-3075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpNkM1qwzAQhEVpoSHNG_SgF3AqybIlH4OT_kBoL-nZbKRVUOpYQbJT-vZNnB4Ku8ywsMPwEfLI2TwvKsme_N73iPOF1FzPOa_Oc0MmQiid5UwVt__8PZmltGeM8VxyXVYT4lap9wfofehocHSNJ2xH408Y6RIOsEO6HJD2gdbQmfNxSL7b0SXikdahO4V2uHxDS99xiKP03yF-Ud_RekP9JSE9kDsHbcLZn07J5_NqU79m64-Xt3qxzozgosrUFjSUABVo5JxLx4QBx4xymlnN5FZZba3MbYmXLWwlC2FKBFUay4XKp0Rec00MKUV0zTGeG8SfhrNmxNVccTUjruaKK_8FqRhgJA</recordid><startdate>20191130</startdate><enddate>20191130</enddate><creator>Vanmore, Mr. Swapnil V.</creator><creator>Chougule, Dr. S. R.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20191130</creationdate><title>Estimation of Level of Liver Damage Due to Cancer using Deep Convolutional Neural Network in CT images</title><author>Vanmore, Mr. Swapnil V. ; Chougule, Dr. S. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2129-7ba8a6aa9a8e1114f02caf0c7f80d804b7d8dd43d6e3d6e5d9452c6ea76cd1273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Vanmore, Mr. Swapnil V.</creatorcontrib><creatorcontrib>Chougule, Dr. S. R.</creatorcontrib><creatorcontrib>Research Scholar, Department Electronics &Telecommunication Engineering. Sanjeevan Engineering Technology & Institute ,Panhala .Shivaji University Kolhapur, India</creatorcontrib><creatorcontrib>Department Electronics &Telecommunication Engineering, Kolhapur Institute of Technology College of Engineering Kolhapur,India</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of innovative technology and exploring engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vanmore, Mr. Swapnil V.</au><au>Chougule, Dr. S. R.</au><aucorp>Research Scholar, Department Electronics &Telecommunication Engineering. Sanjeevan Engineering Technology & Institute ,Panhala .Shivaji University Kolhapur, India</aucorp><aucorp>Department Electronics &Telecommunication Engineering, Kolhapur Institute of Technology College of Engineering Kolhapur,India</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of Level of Liver Damage Due to Cancer using Deep Convolutional Neural Network in CT images</atitle><jtitle>International journal of innovative technology and exploring engineering</jtitle><date>2019-11-30</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>3761</spage><epage>3764</epage><pages>3761-3764</pages><issn>2278-3075</issn><eissn>2278-3075</eissn><abstract>The lesion size estimation is essential need while diagnosing the liver cancer and treatment scenario. The lesion segmentation suing conventional methods such as region growing, threshold based segmentation provide limited performance due to variations in light intensity distribution throughout the image. The deep learning approach used in this paper consist of input dataset of liver abdominal images along with labelled set combination of variety of liver regions and lesion structures. The care has been taken while constructing the dataset such that, the lesion due to cancer in liver of particular image should have at least one matching structure should be present in one of the labelled images. The 3 fold validation is done to evaluate the performance in which total 140 images of liver cancer are used for training, 30 images for validation and 30 images for testing. The result shows 98.5% accuracy for lesion classification. The area of lesion is compared to total area of liver in terms of pixels to estimate the total area occupied by the lesion and amount of liver damage.</abstract><doi>10.35940/ijitee.A4818.119119</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2278-3075 |
ispartof | International journal of innovative technology and exploring engineering, 2019-11, Vol.9 (1), p.3761-3764 |
issn | 2278-3075 2278-3075 |
language | eng |
recordid | cdi_crossref_primary_10_35940_ijitee_A4818_119119 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
title | Estimation of Level of Liver Damage Due to Cancer using Deep Convolutional Neural Network in CT images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T13%3A12%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20Level%20of%20Liver%20Damage%20Due%20to%20Cancer%20using%20Deep%20Convolutional%20Neural%20Network%20in%20CT%20images&rft.jtitle=International%20journal%20of%20innovative%20technology%20and%20exploring%20engineering&rft.au=Vanmore,%20Mr.%20Swapnil%20V.&rft.aucorp=Research%20Scholar,%20Department%20Electronics%20&Telecommunication%20Engineering.%20Sanjeevan%20Engineering%20Technology%20&%20Institute%20,Panhala%20.Shivaji%20University%20Kolhapur,%20India&rft.date=2019-11-30&rft.volume=9&rft.issue=1&rft.spage=3761&rft.epage=3764&rft.pages=3761-3764&rft.issn=2278-3075&rft.eissn=2278-3075&rft_id=info:doi/10.35940/ijitee.A4818.119119&rft_dat=%3Ccrossref%3E10_35940_ijitee_A4818_119119%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |