Defect reduction and dopant activation of in situ phosphorus-doped silicon on a (111) silicon substrate using nanosecond laser annealing

In situ phosphorus-doped silicon (ISPD) has been actively investigated as a source/drain material. However, defect formation during the epitaxial growth of ISPD layers in 3D structures deteriorate the device performance. In this study, we investigate the elimination of inherent defects in ISPD layer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics express 2021-02, Vol.14 (2), p.21001
Hauptverfasser: Shin, Hyunsu, Lee, Juhee, Ko, Eunjung, Kim, Eunha, Ko, Dae-Hong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 21001
container_title Applied physics express
container_volume 14
creator Shin, Hyunsu
Lee, Juhee
Ko, Eunjung
Kim, Eunha
Ko, Dae-Hong
description In situ phosphorus-doped silicon (ISPD) has been actively investigated as a source/drain material. However, defect formation during the epitaxial growth of ISPD layers in 3D structures deteriorate the device performance. In this study, we investigate the elimination of inherent defects in ISPD layers using nanosecond laser annealing (NLA). High-density twin- and stacking-fault defects in the ISPD layers cause strain relaxation and dopant deactivation. The NLA process dramatically reduces or eliminates the defects, consequently generating the strain and electrically activating the incorporated phosphorous. The ISPD epitaxial growth and subsequent NLA processes will be robust methods for the fabrication of advanced 3D devices.
doi_str_mv 10.35848/1882-0786/abd718
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_35848_1882_0786_abd718</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>apexabd718</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-73292d63a2be04f1a58bbbb2c03be8c2520a5d139ef525a1864e49fbb4dc56d33</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsP4C7Luhiby1zSpdQrCG50Hc4kJzqlJkMyI_oGPrZpK12JgUPCf74_5_ATcs7ZpaxUqeZcKVGwRtVzaG3D1QGZ7KXD_btRx-QkpRVjdSl5PSHf1-jQDDSiHc3QBU_BW2pDD36gkJUP2KrB0c7T1A0j7d9CyhXHVGQObVbXndkw2UxnnPOLvZTGNg0RBqRj6vwr9eBDwtyxdA0JY57mEda5dUqOHKwTnv3eU_Jye_O8vC8en-4ellePhcn7DkUjxULYWoJokZWOQ6XafIRhskVlRCUYVJbLBbpKVMBVXWK5cG1bWlPVVsop4bt_TQwpRXS6j907xC_Nmd5GqTdZ6U1uehdl9hQ7Txd6vQpj9HnDf_nZHzz0-Kl5qTMrOGNc99bJH-Fehd8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Defect reduction and dopant activation of in situ phosphorus-doped silicon on a (111) silicon substrate using nanosecond laser annealing</title><source>HEAL-Link subscriptions: Institute of Physics (IOP) Journals</source><source>Institute of Physics Journals</source><creator>Shin, Hyunsu ; Lee, Juhee ; Ko, Eunjung ; Kim, Eunha ; Ko, Dae-Hong</creator><creatorcontrib>Shin, Hyunsu ; Lee, Juhee ; Ko, Eunjung ; Kim, Eunha ; Ko, Dae-Hong</creatorcontrib><description>In situ phosphorus-doped silicon (ISPD) has been actively investigated as a source/drain material. However, defect formation during the epitaxial growth of ISPD layers in 3D structures deteriorate the device performance. In this study, we investigate the elimination of inherent defects in ISPD layers using nanosecond laser annealing (NLA). High-density twin- and stacking-fault defects in the ISPD layers cause strain relaxation and dopant deactivation. The NLA process dramatically reduces or eliminates the defects, consequently generating the strain and electrically activating the incorporated phosphorous. The ISPD epitaxial growth and subsequent NLA processes will be robust methods for the fabrication of advanced 3D devices.</description><identifier>ISSN: 1882-0778</identifier><identifier>EISSN: 1882-0786</identifier><identifier>DOI: 10.35848/1882-0786/abd718</identifier><identifier>CODEN: APEPC4</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Activation ; Defect reduction ; In situ phosphorus-doped silicon ; Nanosecond laser annealing ; Strain ; substrate</subject><ispartof>Applied physics express, 2021-02, Vol.14 (2), p.21001</ispartof><rights>2021 The Japan Society of Applied Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-73292d63a2be04f1a58bbbb2c03be8c2520a5d139ef525a1864e49fbb4dc56d33</citedby><cites>FETCH-LOGICAL-c316t-73292d63a2be04f1a58bbbb2c03be8c2520a5d139ef525a1864e49fbb4dc56d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.35848/1882-0786/abd718/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Shin, Hyunsu</creatorcontrib><creatorcontrib>Lee, Juhee</creatorcontrib><creatorcontrib>Ko, Eunjung</creatorcontrib><creatorcontrib>Kim, Eunha</creatorcontrib><creatorcontrib>Ko, Dae-Hong</creatorcontrib><title>Defect reduction and dopant activation of in situ phosphorus-doped silicon on a (111) silicon substrate using nanosecond laser annealing</title><title>Applied physics express</title><addtitle>Appl. Phys. Express</addtitle><description>In situ phosphorus-doped silicon (ISPD) has been actively investigated as a source/drain material. However, defect formation during the epitaxial growth of ISPD layers in 3D structures deteriorate the device performance. In this study, we investigate the elimination of inherent defects in ISPD layers using nanosecond laser annealing (NLA). High-density twin- and stacking-fault defects in the ISPD layers cause strain relaxation and dopant deactivation. The NLA process dramatically reduces or eliminates the defects, consequently generating the strain and electrically activating the incorporated phosphorous. The ISPD epitaxial growth and subsequent NLA processes will be robust methods for the fabrication of advanced 3D devices.</description><subject>Activation</subject><subject>Defect reduction</subject><subject>In situ phosphorus-doped silicon</subject><subject>Nanosecond laser annealing</subject><subject>Strain</subject><subject>substrate</subject><issn>1882-0778</issn><issn>1882-0786</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKsP4C7Luhiby1zSpdQrCG50Hc4kJzqlJkMyI_oGPrZpK12JgUPCf74_5_ATcs7ZpaxUqeZcKVGwRtVzaG3D1QGZ7KXD_btRx-QkpRVjdSl5PSHf1-jQDDSiHc3QBU_BW2pDD36gkJUP2KrB0c7T1A0j7d9CyhXHVGQObVbXndkw2UxnnPOLvZTGNg0RBqRj6vwr9eBDwtyxdA0JY57mEda5dUqOHKwTnv3eU_Jye_O8vC8en-4ellePhcn7DkUjxULYWoJokZWOQ6XafIRhskVlRCUYVJbLBbpKVMBVXWK5cG1bWlPVVsop4bt_TQwpRXS6j907xC_Nmd5GqTdZ6U1uehdl9hQ7Txd6vQpj9HnDf_nZHzz0-Kl5qTMrOGNc99bJH-Fehd8</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Shin, Hyunsu</creator><creator>Lee, Juhee</creator><creator>Ko, Eunjung</creator><creator>Kim, Eunha</creator><creator>Ko, Dae-Hong</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210201</creationdate><title>Defect reduction and dopant activation of in situ phosphorus-doped silicon on a (111) silicon substrate using nanosecond laser annealing</title><author>Shin, Hyunsu ; Lee, Juhee ; Ko, Eunjung ; Kim, Eunha ; Ko, Dae-Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-73292d63a2be04f1a58bbbb2c03be8c2520a5d139ef525a1864e49fbb4dc56d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Activation</topic><topic>Defect reduction</topic><topic>In situ phosphorus-doped silicon</topic><topic>Nanosecond laser annealing</topic><topic>Strain</topic><topic>substrate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shin, Hyunsu</creatorcontrib><creatorcontrib>Lee, Juhee</creatorcontrib><creatorcontrib>Ko, Eunjung</creatorcontrib><creatorcontrib>Kim, Eunha</creatorcontrib><creatorcontrib>Ko, Dae-Hong</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shin, Hyunsu</au><au>Lee, Juhee</au><au>Ko, Eunjung</au><au>Kim, Eunha</au><au>Ko, Dae-Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defect reduction and dopant activation of in situ phosphorus-doped silicon on a (111) silicon substrate using nanosecond laser annealing</atitle><jtitle>Applied physics express</jtitle><addtitle>Appl. Phys. Express</addtitle><date>2021-02-01</date><risdate>2021</risdate><volume>14</volume><issue>2</issue><spage>21001</spage><pages>21001-</pages><issn>1882-0778</issn><eissn>1882-0786</eissn><coden>APEPC4</coden><abstract>In situ phosphorus-doped silicon (ISPD) has been actively investigated as a source/drain material. However, defect formation during the epitaxial growth of ISPD layers in 3D structures deteriorate the device performance. In this study, we investigate the elimination of inherent defects in ISPD layers using nanosecond laser annealing (NLA). High-density twin- and stacking-fault defects in the ISPD layers cause strain relaxation and dopant deactivation. The NLA process dramatically reduces or eliminates the defects, consequently generating the strain and electrically activating the incorporated phosphorous. The ISPD epitaxial growth and subsequent NLA processes will be robust methods for the fabrication of advanced 3D devices.</abstract><pub>IOP Publishing</pub><doi>10.35848/1882-0786/abd718</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1882-0778
ispartof Applied physics express, 2021-02, Vol.14 (2), p.21001
issn 1882-0778
1882-0786
language eng
recordid cdi_crossref_primary_10_35848_1882_0786_abd718
source HEAL-Link subscriptions: Institute of Physics (IOP) Journals; Institute of Physics Journals
subjects Activation
Defect reduction
In situ phosphorus-doped silicon
Nanosecond laser annealing
Strain
substrate
title Defect reduction and dopant activation of in situ phosphorus-doped silicon on a (111) silicon substrate using nanosecond laser annealing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A52%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defect%20reduction%20and%20dopant%20activation%20of%20in%20situ%20phosphorus-doped%20silicon%20on%20a%20(111)%20silicon%20substrate%20using%20nanosecond%20laser%20annealing&rft.jtitle=Applied%20physics%20express&rft.au=Shin,%20Hyunsu&rft.date=2021-02-01&rft.volume=14&rft.issue=2&rft.spage=21001&rft.pages=21001-&rft.issn=1882-0778&rft.eissn=1882-0786&rft.coden=APEPC4&rft_id=info:doi/10.35848/1882-0786/abd718&rft_dat=%3Ciop_cross%3Eapexabd718%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true