Application of continuous shear wave elastography method with multiple frequency selection to liver viscoelasticity measurement

In this study, we present a method for evaluating liver viscoelasticity using continuous shear wave elastography with an arbitrary frequency selection. In the Voigt model, viscosity depends on the frequency of shear waves, thus allowing viscosity evaluation by combining measurements at different fre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Japanese Journal of Applied Physics 2024-04, Vol.63 (4), p.4
Hauptverfasser: Koda, Ren, Kuwabara, Takato, Tano, Naoki, Tabaru, Marie, Tanigawa, Shunichiro, Kamiyama, Naohisa, Yamakoshi, Yoshiki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 4
container_title Japanese Journal of Applied Physics
container_volume 63
creator Koda, Ren
Kuwabara, Takato
Tano, Naoki
Tabaru, Marie
Tanigawa, Shunichiro
Kamiyama, Naohisa
Yamakoshi, Yoshiki
description In this study, we present a method for evaluating liver viscoelasticity using continuous shear wave elastography with an arbitrary frequency selection. In the Voigt model, viscosity depends on the frequency of shear waves, thus allowing viscosity evaluation by combining measurements at different frequencies. The shear wave frequency must satisfy the continuous shear-wave elastography frequency conditions. Therefore, the shear-wave frequency was selected as an integer fraction of the pulse repetition frequency of the ultrasound device. Low-viscosity phantoms were used in this study. The frequency dependence of shear-wave velocity was confirmed using a viscous phantom. The shear wave velocity dispersion measured using the proposed method was 5.41–8.98 m/s/kHz for four healthy liver volunteers, which are similar to that of a healthy liver reported by magnetic resonance elastography (5.76–7.52 m/s/kHz). It has been demonstrated that the frequency dependence of shear wave propagation can be measured.
doi_str_mv 10.35848/1347-4065/ad3ae4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_35848_1347_4065_ad3ae4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3046777420</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-8564e8fe8f41ee163502620758e4144753f84fa19e17f4710be4b3f7d1abaf203</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWD9-gLeAFy-ryWZ2sz2W4hcUFNRzSLcTm7LdxCTb0pN_3W0relEYGGZ455mZl5ALzq5FUUF1wwXIDFhZ3OiZ0AgHZPDTOiQDxnKewTDPj8lJjIu-LAvgA_I58r6xtU7WtdQZWrs22bZzXaRxjjrQtV4hxUbH5N6D9vMNXWKauxld2zSny65J1jdITcCPDtt6QyM2WO9wydHGrjDQlY212zFsbdOWoGMXcIltOiNHRjcRz7_zKXm7u30dP2STp_vH8WiS1UIMU1YVJWBl-gCOyEtR9A_kTBYVAgeQhTAVGM2HyKUBydkUYSqMnHE91SZn4pRc7rk-uP7QmNTCdaHtVyrBoJRSwk7F96o6uBgDGuWDXeqwUZypnc9qa6ramqr2PvczV_sZ6_wvdLHQXpVCgWLw8lzlys9ML83-kP6P_gL97JCM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3046777420</pqid></control><display><type>article</type><title>Application of continuous shear wave elastography method with multiple frequency selection to liver viscoelasticity measurement</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Koda, Ren ; Kuwabara, Takato ; Tano, Naoki ; Tabaru, Marie ; Tanigawa, Shunichiro ; Kamiyama, Naohisa ; Yamakoshi, Yoshiki</creator><creatorcontrib>Koda, Ren ; Kuwabara, Takato ; Tano, Naoki ; Tabaru, Marie ; Tanigawa, Shunichiro ; Kamiyama, Naohisa ; Yamakoshi, Yoshiki</creatorcontrib><description>In this study, we present a method for evaluating liver viscoelasticity using continuous shear wave elastography with an arbitrary frequency selection. In the Voigt model, viscosity depends on the frequency of shear waves, thus allowing viscosity evaluation by combining measurements at different frequencies. The shear wave frequency must satisfy the continuous shear-wave elastography frequency conditions. Therefore, the shear-wave frequency was selected as an integer fraction of the pulse repetition frequency of the ultrasound device. Low-viscosity phantoms were used in this study. The frequency dependence of shear-wave velocity was confirmed using a viscous phantom. The shear wave velocity dispersion measured using the proposed method was 5.41–8.98 m/s/kHz for four healthy liver volunteers, which are similar to that of a healthy liver reported by magnetic resonance elastography (5.76–7.52 m/s/kHz). It has been demonstrated that the frequency dependence of shear wave propagation can be measured.</description><identifier>ISSN: 0021-4922</identifier><identifier>EISSN: 1347-4065</identifier><identifier>DOI: 10.35848/1347-4065/ad3ae4</identifier><identifier>CODEN: JJAPB6</identifier><language>eng</language><publisher>Tokyo: IOP Publishing</publisher><subject>continuous shear wave elastography ; Liver ; liver viscoelasticity measurement ; Magnetic resonance ; Pulse repetition frequency ; Shear ; shear wave velocity dispersion ; Viscoelasticity ; Viscosity ; Wave dispersion ; Wave propagation ; Wave velocity</subject><ispartof>Japanese Journal of Applied Physics, 2024-04, Vol.63 (4), p.4</ispartof><rights>2024 The Japan Society of Applied Physics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c339t-8564e8fe8f41ee163502620758e4144753f84fa19e17f4710be4b3f7d1abaf203</cites><orcidid>0000-0001-9927-3946</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.35848/1347-4065/ad3ae4/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids></links><search><creatorcontrib>Koda, Ren</creatorcontrib><creatorcontrib>Kuwabara, Takato</creatorcontrib><creatorcontrib>Tano, Naoki</creatorcontrib><creatorcontrib>Tabaru, Marie</creatorcontrib><creatorcontrib>Tanigawa, Shunichiro</creatorcontrib><creatorcontrib>Kamiyama, Naohisa</creatorcontrib><creatorcontrib>Yamakoshi, Yoshiki</creatorcontrib><title>Application of continuous shear wave elastography method with multiple frequency selection to liver viscoelasticity measurement</title><title>Japanese Journal of Applied Physics</title><addtitle>Jpn. J. Appl. Phys</addtitle><description>In this study, we present a method for evaluating liver viscoelasticity using continuous shear wave elastography with an arbitrary frequency selection. In the Voigt model, viscosity depends on the frequency of shear waves, thus allowing viscosity evaluation by combining measurements at different frequencies. The shear wave frequency must satisfy the continuous shear-wave elastography frequency conditions. Therefore, the shear-wave frequency was selected as an integer fraction of the pulse repetition frequency of the ultrasound device. Low-viscosity phantoms were used in this study. The frequency dependence of shear-wave velocity was confirmed using a viscous phantom. The shear wave velocity dispersion measured using the proposed method was 5.41–8.98 m/s/kHz for four healthy liver volunteers, which are similar to that of a healthy liver reported by magnetic resonance elastography (5.76–7.52 m/s/kHz). It has been demonstrated that the frequency dependence of shear wave propagation can be measured.</description><subject>continuous shear wave elastography</subject><subject>Liver</subject><subject>liver viscoelasticity measurement</subject><subject>Magnetic resonance</subject><subject>Pulse repetition frequency</subject><subject>Shear</subject><subject>shear wave velocity dispersion</subject><subject>Viscoelasticity</subject><subject>Viscosity</subject><subject>Wave dispersion</subject><subject>Wave propagation</subject><subject>Wave velocity</subject><issn>0021-4922</issn><issn>1347-4065</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWD9-gLeAFy-ryWZ2sz2W4hcUFNRzSLcTm7LdxCTb0pN_3W0relEYGGZ455mZl5ALzq5FUUF1wwXIDFhZ3OiZ0AgHZPDTOiQDxnKewTDPj8lJjIu-LAvgA_I58r6xtU7WtdQZWrs22bZzXaRxjjrQtV4hxUbH5N6D9vMNXWKauxld2zSny65J1jdITcCPDtt6QyM2WO9wydHGrjDQlY212zFsbdOWoGMXcIltOiNHRjcRz7_zKXm7u30dP2STp_vH8WiS1UIMU1YVJWBl-gCOyEtR9A_kTBYVAgeQhTAVGM2HyKUBydkUYSqMnHE91SZn4pRc7rk-uP7QmNTCdaHtVyrBoJRSwk7F96o6uBgDGuWDXeqwUZypnc9qa6ramqr2PvczV_sZ6_wvdLHQXpVCgWLw8lzlys9ML83-kP6P_gL97JCM</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Koda, Ren</creator><creator>Kuwabara, Takato</creator><creator>Tano, Naoki</creator><creator>Tabaru, Marie</creator><creator>Tanigawa, Shunichiro</creator><creator>Kamiyama, Naohisa</creator><creator>Yamakoshi, Yoshiki</creator><general>IOP Publishing</general><general>Japanese Journal of Applied Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9927-3946</orcidid></search><sort><creationdate>20240401</creationdate><title>Application of continuous shear wave elastography method with multiple frequency selection to liver viscoelasticity measurement</title><author>Koda, Ren ; Kuwabara, Takato ; Tano, Naoki ; Tabaru, Marie ; Tanigawa, Shunichiro ; Kamiyama, Naohisa ; Yamakoshi, Yoshiki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-8564e8fe8f41ee163502620758e4144753f84fa19e17f4710be4b3f7d1abaf203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>continuous shear wave elastography</topic><topic>Liver</topic><topic>liver viscoelasticity measurement</topic><topic>Magnetic resonance</topic><topic>Pulse repetition frequency</topic><topic>Shear</topic><topic>shear wave velocity dispersion</topic><topic>Viscoelasticity</topic><topic>Viscosity</topic><topic>Wave dispersion</topic><topic>Wave propagation</topic><topic>Wave velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koda, Ren</creatorcontrib><creatorcontrib>Kuwabara, Takato</creatorcontrib><creatorcontrib>Tano, Naoki</creatorcontrib><creatorcontrib>Tabaru, Marie</creatorcontrib><creatorcontrib>Tanigawa, Shunichiro</creatorcontrib><creatorcontrib>Kamiyama, Naohisa</creatorcontrib><creatorcontrib>Yamakoshi, Yoshiki</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Japanese Journal of Applied Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koda, Ren</au><au>Kuwabara, Takato</au><au>Tano, Naoki</au><au>Tabaru, Marie</au><au>Tanigawa, Shunichiro</au><au>Kamiyama, Naohisa</au><au>Yamakoshi, Yoshiki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of continuous shear wave elastography method with multiple frequency selection to liver viscoelasticity measurement</atitle><jtitle>Japanese Journal of Applied Physics</jtitle><addtitle>Jpn. J. Appl. Phys</addtitle><date>2024-04-01</date><risdate>2024</risdate><volume>63</volume><issue>4</issue><spage>4</spage><pages>4-</pages><issn>0021-4922</issn><eissn>1347-4065</eissn><coden>JJAPB6</coden><abstract>In this study, we present a method for evaluating liver viscoelasticity using continuous shear wave elastography with an arbitrary frequency selection. In the Voigt model, viscosity depends on the frequency of shear waves, thus allowing viscosity evaluation by combining measurements at different frequencies. The shear wave frequency must satisfy the continuous shear-wave elastography frequency conditions. Therefore, the shear-wave frequency was selected as an integer fraction of the pulse repetition frequency of the ultrasound device. Low-viscosity phantoms were used in this study. The frequency dependence of shear-wave velocity was confirmed using a viscous phantom. The shear wave velocity dispersion measured using the proposed method was 5.41–8.98 m/s/kHz for four healthy liver volunteers, which are similar to that of a healthy liver reported by magnetic resonance elastography (5.76–7.52 m/s/kHz). It has been demonstrated that the frequency dependence of shear wave propagation can be measured.</abstract><cop>Tokyo</cop><pub>IOP Publishing</pub><doi>10.35848/1347-4065/ad3ae4</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-9927-3946</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-4922
ispartof Japanese Journal of Applied Physics, 2024-04, Vol.63 (4), p.4
issn 0021-4922
1347-4065
language eng
recordid cdi_crossref_primary_10_35848_1347_4065_ad3ae4
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects continuous shear wave elastography
Liver
liver viscoelasticity measurement
Magnetic resonance
Pulse repetition frequency
Shear
shear wave velocity dispersion
Viscoelasticity
Viscosity
Wave dispersion
Wave propagation
Wave velocity
title Application of continuous shear wave elastography method with multiple frequency selection to liver viscoelasticity measurement
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T20%3A53%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20continuous%20shear%20wave%20elastography%20method%20with%20multiple%20frequency%20selection%20to%20liver%20viscoelasticity%20measurement&rft.jtitle=Japanese%20Journal%20of%20Applied%20Physics&rft.au=Koda,%20Ren&rft.date=2024-04-01&rft.volume=63&rft.issue=4&rft.spage=4&rft.pages=4-&rft.issn=0021-4922&rft.eissn=1347-4065&rft.coden=JJAPB6&rft_id=info:doi/10.35848/1347-4065/ad3ae4&rft_dat=%3Cproquest_cross%3E3046777420%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3046777420&rft_id=info:pmid/&rfr_iscdi=true