Efficient optimization approach for designing power device structure using machine learning

Low power-loss semiconductor devices are necessary to achieve a carbon-neutral society. The optimization of device structures is known as a time-consuming process. In this work, we investigated an optimization approach with the help of machine learning. We applied an active learning scheme to optimi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Japanese Journal of Applied Physics 2023-04, Vol.62 (SC), p.SC1050
Hauptverfasser: Yamano, Hayate, Kovacs, Alexander, Fischbacher, Johann, Danno, Katsunori, Umetani, Yusuke, Shoji, Tetsuya, Schrefl, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue SC
container_start_page SC1050
container_title Japanese Journal of Applied Physics
container_volume 62
creator Yamano, Hayate
Kovacs, Alexander
Fischbacher, Johann
Danno, Katsunori
Umetani, Yusuke
Shoji, Tetsuya
Schrefl, Thomas
description Low power-loss semiconductor devices are necessary to achieve a carbon-neutral society. The optimization of device structures is known as a time-consuming process. In this work, we investigated an optimization approach with the help of machine learning. We applied an active learning scheme to optimize a gallium oxide Schottky barrier diode structure and demonstrated how this approach helps to reduce the number of time-consuming simulations for the optimization process. For the investigated work, the active learning strategy almost reduced the number of simulations by a factor of 2 in contrast to the conventional genetic optimization. In addition, we also demonstrated that machine learning models can be used to estimate the performance variations caused by process variations. This approach can also contribute to reducing the number of simulations and speeding up the structure design process.
doi_str_mv 10.35848/1347-4065/acb061
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_35848_1347_4065_acb061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2773879883</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-67295a08245e13065c47834db5d01c7ebca3f5d5658c162fb4514ebc12f127483</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wFvAk4e1-dykRyn1Awoe1JOHkM0mNUu7G5NdRX-9WSt6EWFgmJln3hleAE4xuqBcMjnDlImCoZLPtKlQiffA5Ke1DyYIEVywOSGH4CilJpclZ3gCnpbOeeNt28Mu9H7rP3TvuxbqEGKnzTN0XYS1TX7d-nYNQ_dmx_rVGwtTHwfTD9HCIY3DbeZ9a-HG6jjSx-DA6U2yJ995Ch6vlg-Lm2J1d327uFwVhkrZF6Ugc66RJIxbTPO7hglJWV3xGmEjbGU0dbzmJZcGl8RVjGOWu5g4TASTdArOdrr55ZfBpl413RDbfFIRIagUcylppvCOMrFLKVqnQvRbHd8VRurLQzUapkbD1M7DvFPsdnwXfkX_48__4JtGB1USdb_IgRFHKtSOfgKr6YGI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2773879883</pqid></control><display><type>article</type><title>Efficient optimization approach for designing power device structure using machine learning</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Yamano, Hayate ; Kovacs, Alexander ; Fischbacher, Johann ; Danno, Katsunori ; Umetani, Yusuke ; Shoji, Tetsuya ; Schrefl, Thomas</creator><creatorcontrib>Yamano, Hayate ; Kovacs, Alexander ; Fischbacher, Johann ; Danno, Katsunori ; Umetani, Yusuke ; Shoji, Tetsuya ; Schrefl, Thomas</creatorcontrib><description>Low power-loss semiconductor devices are necessary to achieve a carbon-neutral society. The optimization of device structures is known as a time-consuming process. In this work, we investigated an optimization approach with the help of machine learning. We applied an active learning scheme to optimize a gallium oxide Schottky barrier diode structure and demonstrated how this approach helps to reduce the number of time-consuming simulations for the optimization process. For the investigated work, the active learning strategy almost reduced the number of simulations by a factor of 2 in contrast to the conventional genetic optimization. In addition, we also demonstrated that machine learning models can be used to estimate the performance variations caused by process variations. This approach can also contribute to reducing the number of simulations and speeding up the structure design process.</description><identifier>ISSN: 0021-4922</identifier><identifier>EISSN: 1347-4065</identifier><identifier>DOI: 10.35848/1347-4065/acb061</identifier><identifier>CODEN: JJAPB6</identifier><language>eng</language><publisher>Tokyo: IOP Publishing</publisher><subject>gallium oxide ; Gallium oxides ; Machine learning ; Optimization ; power device ; Power management ; Power semiconductor devices ; Schottky diodes ; Simulation</subject><ispartof>Japanese Journal of Applied Physics, 2023-04, Vol.62 (SC), p.SC1050</ispartof><rights>2023 The Japan Society of Applied Physics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-67295a08245e13065c47834db5d01c7ebca3f5d5658c162fb4514ebc12f127483</citedby><cites>FETCH-LOGICAL-c388t-67295a08245e13065c47834db5d01c7ebca3f5d5658c162fb4514ebc12f127483</cites><orcidid>0000-0002-0815-5379</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.35848/1347-4065/acb061/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids></links><search><creatorcontrib>Yamano, Hayate</creatorcontrib><creatorcontrib>Kovacs, Alexander</creatorcontrib><creatorcontrib>Fischbacher, Johann</creatorcontrib><creatorcontrib>Danno, Katsunori</creatorcontrib><creatorcontrib>Umetani, Yusuke</creatorcontrib><creatorcontrib>Shoji, Tetsuya</creatorcontrib><creatorcontrib>Schrefl, Thomas</creatorcontrib><title>Efficient optimization approach for designing power device structure using machine learning</title><title>Japanese Journal of Applied Physics</title><addtitle>Jpn. J. Appl. Phys</addtitle><description>Low power-loss semiconductor devices are necessary to achieve a carbon-neutral society. The optimization of device structures is known as a time-consuming process. In this work, we investigated an optimization approach with the help of machine learning. We applied an active learning scheme to optimize a gallium oxide Schottky barrier diode structure and demonstrated how this approach helps to reduce the number of time-consuming simulations for the optimization process. For the investigated work, the active learning strategy almost reduced the number of simulations by a factor of 2 in contrast to the conventional genetic optimization. In addition, we also demonstrated that machine learning models can be used to estimate the performance variations caused by process variations. This approach can also contribute to reducing the number of simulations and speeding up the structure design process.</description><subject>gallium oxide</subject><subject>Gallium oxides</subject><subject>Machine learning</subject><subject>Optimization</subject><subject>power device</subject><subject>Power management</subject><subject>Power semiconductor devices</subject><subject>Schottky diodes</subject><subject>Simulation</subject><issn>0021-4922</issn><issn>1347-4065</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_wFvAk4e1-dykRyn1Awoe1JOHkM0mNUu7G5NdRX-9WSt6EWFgmJln3hleAE4xuqBcMjnDlImCoZLPtKlQiffA5Ke1DyYIEVywOSGH4CilJpclZ3gCnpbOeeNt28Mu9H7rP3TvuxbqEGKnzTN0XYS1TX7d-nYNQ_dmx_rVGwtTHwfTD9HCIY3DbeZ9a-HG6jjSx-DA6U2yJ995Ch6vlg-Lm2J1d327uFwVhkrZF6Ugc66RJIxbTPO7hglJWV3xGmEjbGU0dbzmJZcGl8RVjGOWu5g4TASTdArOdrr55ZfBpl413RDbfFIRIagUcylppvCOMrFLKVqnQvRbHd8VRurLQzUapkbD1M7DvFPsdnwXfkX_48__4JtGB1USdb_IgRFHKtSOfgKr6YGI</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Yamano, Hayate</creator><creator>Kovacs, Alexander</creator><creator>Fischbacher, Johann</creator><creator>Danno, Katsunori</creator><creator>Umetani, Yusuke</creator><creator>Shoji, Tetsuya</creator><creator>Schrefl, Thomas</creator><general>IOP Publishing</general><general>Japanese Journal of Applied Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0815-5379</orcidid></search><sort><creationdate>20230401</creationdate><title>Efficient optimization approach for designing power device structure using machine learning</title><author>Yamano, Hayate ; Kovacs, Alexander ; Fischbacher, Johann ; Danno, Katsunori ; Umetani, Yusuke ; Shoji, Tetsuya ; Schrefl, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-67295a08245e13065c47834db5d01c7ebca3f5d5658c162fb4514ebc12f127483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>gallium oxide</topic><topic>Gallium oxides</topic><topic>Machine learning</topic><topic>Optimization</topic><topic>power device</topic><topic>Power management</topic><topic>Power semiconductor devices</topic><topic>Schottky diodes</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yamano, Hayate</creatorcontrib><creatorcontrib>Kovacs, Alexander</creatorcontrib><creatorcontrib>Fischbacher, Johann</creatorcontrib><creatorcontrib>Danno, Katsunori</creatorcontrib><creatorcontrib>Umetani, Yusuke</creatorcontrib><creatorcontrib>Shoji, Tetsuya</creatorcontrib><creatorcontrib>Schrefl, Thomas</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Japanese Journal of Applied Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yamano, Hayate</au><au>Kovacs, Alexander</au><au>Fischbacher, Johann</au><au>Danno, Katsunori</au><au>Umetani, Yusuke</au><au>Shoji, Tetsuya</au><au>Schrefl, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient optimization approach for designing power device structure using machine learning</atitle><jtitle>Japanese Journal of Applied Physics</jtitle><addtitle>Jpn. J. Appl. Phys</addtitle><date>2023-04-01</date><risdate>2023</risdate><volume>62</volume><issue>SC</issue><spage>SC1050</spage><pages>SC1050-</pages><issn>0021-4922</issn><eissn>1347-4065</eissn><coden>JJAPB6</coden><abstract>Low power-loss semiconductor devices are necessary to achieve a carbon-neutral society. The optimization of device structures is known as a time-consuming process. In this work, we investigated an optimization approach with the help of machine learning. We applied an active learning scheme to optimize a gallium oxide Schottky barrier diode structure and demonstrated how this approach helps to reduce the number of time-consuming simulations for the optimization process. For the investigated work, the active learning strategy almost reduced the number of simulations by a factor of 2 in contrast to the conventional genetic optimization. In addition, we also demonstrated that machine learning models can be used to estimate the performance variations caused by process variations. This approach can also contribute to reducing the number of simulations and speeding up the structure design process.</abstract><cop>Tokyo</cop><pub>IOP Publishing</pub><doi>10.35848/1347-4065/acb061</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-0815-5379</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-4922
ispartof Japanese Journal of Applied Physics, 2023-04, Vol.62 (SC), p.SC1050
issn 0021-4922
1347-4065
language eng
recordid cdi_crossref_primary_10_35848_1347_4065_acb061
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects gallium oxide
Gallium oxides
Machine learning
Optimization
power device
Power management
Power semiconductor devices
Schottky diodes
Simulation
title Efficient optimization approach for designing power device structure using machine learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T09%3A41%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20optimization%20approach%20for%20designing%20power%20device%20structure%20using%20machine%20learning&rft.jtitle=Japanese%20Journal%20of%20Applied%20Physics&rft.au=Yamano,%20Hayate&rft.date=2023-04-01&rft.volume=62&rft.issue=SC&rft.spage=SC1050&rft.pages=SC1050-&rft.issn=0021-4922&rft.eissn=1347-4065&rft.coden=JJAPB6&rft_id=info:doi/10.35848/1347-4065/acb061&rft_dat=%3Cproquest_cross%3E2773879883%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2773879883&rft_id=info:pmid/&rfr_iscdi=true