Efficient optimization approach for designing power device structure using machine learning
Low power-loss semiconductor devices are necessary to achieve a carbon-neutral society. The optimization of device structures is known as a time-consuming process. In this work, we investigated an optimization approach with the help of machine learning. We applied an active learning scheme to optimi...
Gespeichert in:
Veröffentlicht in: | Japanese Journal of Applied Physics 2023-04, Vol.62 (SC), p.SC1050 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | SC |
container_start_page | SC1050 |
container_title | Japanese Journal of Applied Physics |
container_volume | 62 |
creator | Yamano, Hayate Kovacs, Alexander Fischbacher, Johann Danno, Katsunori Umetani, Yusuke Shoji, Tetsuya Schrefl, Thomas |
description | Low power-loss semiconductor devices are necessary to achieve a carbon-neutral society. The optimization of device structures is known as a time-consuming process. In this work, we investigated an optimization approach with the help of machine learning. We applied an active learning scheme to optimize a gallium oxide Schottky barrier diode structure and demonstrated how this approach helps to reduce the number of time-consuming simulations for the optimization process. For the investigated work, the active learning strategy almost reduced the number of simulations by a factor of 2 in contrast to the conventional genetic optimization. In addition, we also demonstrated that machine learning models can be used to estimate the performance variations caused by process variations. This approach can also contribute to reducing the number of simulations and speeding up the structure design process. |
doi_str_mv | 10.35848/1347-4065/acb061 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_35848_1347_4065_acb061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2773879883</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-67295a08245e13065c47834db5d01c7ebca3f5d5658c162fb4514ebc12f127483</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wFvAk4e1-dykRyn1Awoe1JOHkM0mNUu7G5NdRX-9WSt6EWFgmJln3hleAE4xuqBcMjnDlImCoZLPtKlQiffA5Ke1DyYIEVywOSGH4CilJpclZ3gCnpbOeeNt28Mu9H7rP3TvuxbqEGKnzTN0XYS1TX7d-nYNQ_dmx_rVGwtTHwfTD9HCIY3DbeZ9a-HG6jjSx-DA6U2yJ995Ch6vlg-Lm2J1d327uFwVhkrZF6Ugc66RJIxbTPO7hglJWV3xGmEjbGU0dbzmJZcGl8RVjGOWu5g4TASTdArOdrr55ZfBpl413RDbfFIRIagUcylppvCOMrFLKVqnQvRbHd8VRurLQzUapkbD1M7DvFPsdnwXfkX_48__4JtGB1USdb_IgRFHKtSOfgKr6YGI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2773879883</pqid></control><display><type>article</type><title>Efficient optimization approach for designing power device structure using machine learning</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Yamano, Hayate ; Kovacs, Alexander ; Fischbacher, Johann ; Danno, Katsunori ; Umetani, Yusuke ; Shoji, Tetsuya ; Schrefl, Thomas</creator><creatorcontrib>Yamano, Hayate ; Kovacs, Alexander ; Fischbacher, Johann ; Danno, Katsunori ; Umetani, Yusuke ; Shoji, Tetsuya ; Schrefl, Thomas</creatorcontrib><description>Low power-loss semiconductor devices are necessary to achieve a carbon-neutral society. The optimization of device structures is known as a time-consuming process. In this work, we investigated an optimization approach with the help of machine learning. We applied an active learning scheme to optimize a gallium oxide Schottky barrier diode structure and demonstrated how this approach helps to reduce the number of time-consuming simulations for the optimization process. For the investigated work, the active learning strategy almost reduced the number of simulations by a factor of 2 in contrast to the conventional genetic optimization. In addition, we also demonstrated that machine learning models can be used to estimate the performance variations caused by process variations. This approach can also contribute to reducing the number of simulations and speeding up the structure design process.</description><identifier>ISSN: 0021-4922</identifier><identifier>EISSN: 1347-4065</identifier><identifier>DOI: 10.35848/1347-4065/acb061</identifier><identifier>CODEN: JJAPB6</identifier><language>eng</language><publisher>Tokyo: IOP Publishing</publisher><subject>gallium oxide ; Gallium oxides ; Machine learning ; Optimization ; power device ; Power management ; Power semiconductor devices ; Schottky diodes ; Simulation</subject><ispartof>Japanese Journal of Applied Physics, 2023-04, Vol.62 (SC), p.SC1050</ispartof><rights>2023 The Japan Society of Applied Physics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-67295a08245e13065c47834db5d01c7ebca3f5d5658c162fb4514ebc12f127483</citedby><cites>FETCH-LOGICAL-c388t-67295a08245e13065c47834db5d01c7ebca3f5d5658c162fb4514ebc12f127483</cites><orcidid>0000-0002-0815-5379</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.35848/1347-4065/acb061/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids></links><search><creatorcontrib>Yamano, Hayate</creatorcontrib><creatorcontrib>Kovacs, Alexander</creatorcontrib><creatorcontrib>Fischbacher, Johann</creatorcontrib><creatorcontrib>Danno, Katsunori</creatorcontrib><creatorcontrib>Umetani, Yusuke</creatorcontrib><creatorcontrib>Shoji, Tetsuya</creatorcontrib><creatorcontrib>Schrefl, Thomas</creatorcontrib><title>Efficient optimization approach for designing power device structure using machine learning</title><title>Japanese Journal of Applied Physics</title><addtitle>Jpn. J. Appl. Phys</addtitle><description>Low power-loss semiconductor devices are necessary to achieve a carbon-neutral society. The optimization of device structures is known as a time-consuming process. In this work, we investigated an optimization approach with the help of machine learning. We applied an active learning scheme to optimize a gallium oxide Schottky barrier diode structure and demonstrated how this approach helps to reduce the number of time-consuming simulations for the optimization process. For the investigated work, the active learning strategy almost reduced the number of simulations by a factor of 2 in contrast to the conventional genetic optimization. In addition, we also demonstrated that machine learning models can be used to estimate the performance variations caused by process variations. This approach can also contribute to reducing the number of simulations and speeding up the structure design process.</description><subject>gallium oxide</subject><subject>Gallium oxides</subject><subject>Machine learning</subject><subject>Optimization</subject><subject>power device</subject><subject>Power management</subject><subject>Power semiconductor devices</subject><subject>Schottky diodes</subject><subject>Simulation</subject><issn>0021-4922</issn><issn>1347-4065</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_wFvAk4e1-dykRyn1Awoe1JOHkM0mNUu7G5NdRX-9WSt6EWFgmJln3hleAE4xuqBcMjnDlImCoZLPtKlQiffA5Ke1DyYIEVywOSGH4CilJpclZ3gCnpbOeeNt28Mu9H7rP3TvuxbqEGKnzTN0XYS1TX7d-nYNQ_dmx_rVGwtTHwfTD9HCIY3DbeZ9a-HG6jjSx-DA6U2yJ995Ch6vlg-Lm2J1d327uFwVhkrZF6Ugc66RJIxbTPO7hglJWV3xGmEjbGU0dbzmJZcGl8RVjGOWu5g4TASTdArOdrr55ZfBpl413RDbfFIRIagUcylppvCOMrFLKVqnQvRbHd8VRurLQzUapkbD1M7DvFPsdnwXfkX_48__4JtGB1USdb_IgRFHKtSOfgKr6YGI</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Yamano, Hayate</creator><creator>Kovacs, Alexander</creator><creator>Fischbacher, Johann</creator><creator>Danno, Katsunori</creator><creator>Umetani, Yusuke</creator><creator>Shoji, Tetsuya</creator><creator>Schrefl, Thomas</creator><general>IOP Publishing</general><general>Japanese Journal of Applied Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0815-5379</orcidid></search><sort><creationdate>20230401</creationdate><title>Efficient optimization approach for designing power device structure using machine learning</title><author>Yamano, Hayate ; Kovacs, Alexander ; Fischbacher, Johann ; Danno, Katsunori ; Umetani, Yusuke ; Shoji, Tetsuya ; Schrefl, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-67295a08245e13065c47834db5d01c7ebca3f5d5658c162fb4514ebc12f127483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>gallium oxide</topic><topic>Gallium oxides</topic><topic>Machine learning</topic><topic>Optimization</topic><topic>power device</topic><topic>Power management</topic><topic>Power semiconductor devices</topic><topic>Schottky diodes</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yamano, Hayate</creatorcontrib><creatorcontrib>Kovacs, Alexander</creatorcontrib><creatorcontrib>Fischbacher, Johann</creatorcontrib><creatorcontrib>Danno, Katsunori</creatorcontrib><creatorcontrib>Umetani, Yusuke</creatorcontrib><creatorcontrib>Shoji, Tetsuya</creatorcontrib><creatorcontrib>Schrefl, Thomas</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Japanese Journal of Applied Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yamano, Hayate</au><au>Kovacs, Alexander</au><au>Fischbacher, Johann</au><au>Danno, Katsunori</au><au>Umetani, Yusuke</au><au>Shoji, Tetsuya</au><au>Schrefl, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient optimization approach for designing power device structure using machine learning</atitle><jtitle>Japanese Journal of Applied Physics</jtitle><addtitle>Jpn. J. Appl. Phys</addtitle><date>2023-04-01</date><risdate>2023</risdate><volume>62</volume><issue>SC</issue><spage>SC1050</spage><pages>SC1050-</pages><issn>0021-4922</issn><eissn>1347-4065</eissn><coden>JJAPB6</coden><abstract>Low power-loss semiconductor devices are necessary to achieve a carbon-neutral society. The optimization of device structures is known as a time-consuming process. In this work, we investigated an optimization approach with the help of machine learning. We applied an active learning scheme to optimize a gallium oxide Schottky barrier diode structure and demonstrated how this approach helps to reduce the number of time-consuming simulations for the optimization process. For the investigated work, the active learning strategy almost reduced the number of simulations by a factor of 2 in contrast to the conventional genetic optimization. In addition, we also demonstrated that machine learning models can be used to estimate the performance variations caused by process variations. This approach can also contribute to reducing the number of simulations and speeding up the structure design process.</abstract><cop>Tokyo</cop><pub>IOP Publishing</pub><doi>10.35848/1347-4065/acb061</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-0815-5379</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-4922 |
ispartof | Japanese Journal of Applied Physics, 2023-04, Vol.62 (SC), p.SC1050 |
issn | 0021-4922 1347-4065 |
language | eng |
recordid | cdi_crossref_primary_10_35848_1347_4065_acb061 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | gallium oxide Gallium oxides Machine learning Optimization power device Power management Power semiconductor devices Schottky diodes Simulation |
title | Efficient optimization approach for designing power device structure using machine learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T09%3A41%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20optimization%20approach%20for%20designing%20power%20device%20structure%20using%20machine%20learning&rft.jtitle=Japanese%20Journal%20of%20Applied%20Physics&rft.au=Yamano,%20Hayate&rft.date=2023-04-01&rft.volume=62&rft.issue=SC&rft.spage=SC1050&rft.pages=SC1050-&rft.issn=0021-4922&rft.eissn=1347-4065&rft.coden=JJAPB6&rft_id=info:doi/10.35848/1347-4065/acb061&rft_dat=%3Cproquest_cross%3E2773879883%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2773879883&rft_id=info:pmid/&rfr_iscdi=true |