Single-chip mixer-based subarray beamformer for sub-Nyquist sampling in ultrasound imaging

Compressed sensing (CS) has been proposed as a method of breaking the seemingly inherent tradeoff between sampling rate and resolution in a variety of applications, such as ultrasound imaging. Although various studies have demonstrated the effectiveness of using CS for sub-Nyquist sampling in ultras...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Japanese Journal of Applied Physics 2021-05, Vol.60 (SB), p.SBBL08
Hauptverfasser: Kanemoto, Daisuke, Spaulding, Jonathon, Murmann, Boris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue SB
container_start_page SBBL08
container_title Japanese Journal of Applied Physics
container_volume 60
creator Kanemoto, Daisuke
Spaulding, Jonathon
Murmann, Boris
description Compressed sensing (CS) has been proposed as a method of breaking the seemingly inherent tradeoff between sampling rate and resolution in a variety of applications, such as ultrasound imaging. Although various studies have demonstrated the effectiveness of using CS for sub-Nyquist sampling in ultrasound imaging, a dedicated integrated circuit (IC) has not yet been presented. This work introduces a single-chip mixer-based subarray beamformer, an important component for sub-Nyquist sampling in a CS ultrasound imaging system. The beamformer chip, which performs mixing, filtering, and summation of delayed signals within a subarray, is implemented using a single operational transconductance amplifier. We evaluated the performance of the proposed mixer-based subarray beamformer circuit fabricated using a 65 nm CMOS process with 0.4 mW ch −1 power consumption from a 1.2 V supply. Measurement results indicate that the prototype chip is suitable for subarray beamforming with a 5 ns resolution digital mixing sequence. The IC presented here is the first known implementation of a mixer-based subarray beamformer for sub-Nyquist sampling in ultrasonic applications and is expected to reduce sampling data requirements by a factor of 32.
doi_str_mv 10.35848/1347-4065/abec8b
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_35848_1347_4065_abec8b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2518767154</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-d53d80eadffd40c3fe5206586661de3be54ed384e410fe0082fc83551d0b9bf73</originalsourceid><addsrcrecordid>eNp9UE1LAzEUDKJgrf4AbwFPHmKTTbKbHq34BUUP1YuXkN281F32q0kX7L83dUUvIjwY3jDz3jAInTN6xaUSasa4yIigqZyZHAqVH6DJD3WIJpQmjIh5khyjkxCquKZSsAl6W5XtugZSvJc9bsoP8CQ3ASwOQ268Nzucg2lc5xvwOMKeJ0-7zVCGLQ6m6evox2WLh3rrTeiG1uKyMevInqIjZ-oAZ984Ra93ty83D2T5fP94c70kheDJlljJraJgrHNW0II7kEnMrNI0ZRZ4DlKA5UqAYNQBpSpxheJSMkvzee4yPkUX493ed5sBwlZX3eDb-FInkqkszZgUUcVGVeG7EDw43fsY1O80o_qrQr3vS-_70mOF0UNGT9n1v0f_01_-oa8q0-uU6tUizmJJle6t459NY4Mm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2518767154</pqid></control><display><type>article</type><title>Single-chip mixer-based subarray beamformer for sub-Nyquist sampling in ultrasound imaging</title><source>Institute of Physics Journals</source><creator>Kanemoto, Daisuke ; Spaulding, Jonathon ; Murmann, Boris</creator><creatorcontrib>Kanemoto, Daisuke ; Spaulding, Jonathon ; Murmann, Boris</creatorcontrib><description>Compressed sensing (CS) has been proposed as a method of breaking the seemingly inherent tradeoff between sampling rate and resolution in a variety of applications, such as ultrasound imaging. Although various studies have demonstrated the effectiveness of using CS for sub-Nyquist sampling in ultrasound imaging, a dedicated integrated circuit (IC) has not yet been presented. This work introduces a single-chip mixer-based subarray beamformer, an important component for sub-Nyquist sampling in a CS ultrasound imaging system. The beamformer chip, which performs mixing, filtering, and summation of delayed signals within a subarray, is implemented using a single operational transconductance amplifier. We evaluated the performance of the proposed mixer-based subarray beamformer circuit fabricated using a 65 nm CMOS process with 0.4 mW ch −1 power consumption from a 1.2 V supply. Measurement results indicate that the prototype chip is suitable for subarray beamforming with a 5 ns resolution digital mixing sequence. The IC presented here is the first known implementation of a mixer-based subarray beamformer for sub-Nyquist sampling in ultrasonic applications and is expected to reduce sampling data requirements by a factor of 32.</description><identifier>ISSN: 0021-4922</identifier><identifier>EISSN: 1347-4065</identifier><identifier>DOI: 10.35848/1347-4065/abec8b</identifier><identifier>CODEN: JJAPB6</identifier><language>eng</language><publisher>Tokyo: IOP Publishing</publisher><subject>Beamformer ; Beamforming ; CMOS ; Compressed Sensing ; Imaging ; Integrated Circuit ; Integrated circuits ; Operational amplifiers ; Power consumption ; Sampling ; Transconductance ; Ultrasonic imaging ; Ultrasound ; Ultrasound imaging</subject><ispartof>Japanese Journal of Applied Physics, 2021-05, Vol.60 (SB), p.SBBL08</ispartof><rights>2021 The Author(s). Published on behalf of The Japan Society of Applied Physics by IOP Publishing Ltd</rights><rights>Copyright Japanese Journal of Applied Physics May 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c432t-d53d80eadffd40c3fe5206586661de3be54ed384e410fe0082fc83551d0b9bf73</citedby><cites>FETCH-LOGICAL-c432t-d53d80eadffd40c3fe5206586661de3be54ed384e410fe0082fc83551d0b9bf73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.35848/1347-4065/abec8b/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Kanemoto, Daisuke</creatorcontrib><creatorcontrib>Spaulding, Jonathon</creatorcontrib><creatorcontrib>Murmann, Boris</creatorcontrib><title>Single-chip mixer-based subarray beamformer for sub-Nyquist sampling in ultrasound imaging</title><title>Japanese Journal of Applied Physics</title><addtitle>Jpn. J. Appl. Phys</addtitle><description>Compressed sensing (CS) has been proposed as a method of breaking the seemingly inherent tradeoff between sampling rate and resolution in a variety of applications, such as ultrasound imaging. Although various studies have demonstrated the effectiveness of using CS for sub-Nyquist sampling in ultrasound imaging, a dedicated integrated circuit (IC) has not yet been presented. This work introduces a single-chip mixer-based subarray beamformer, an important component for sub-Nyquist sampling in a CS ultrasound imaging system. The beamformer chip, which performs mixing, filtering, and summation of delayed signals within a subarray, is implemented using a single operational transconductance amplifier. We evaluated the performance of the proposed mixer-based subarray beamformer circuit fabricated using a 65 nm CMOS process with 0.4 mW ch −1 power consumption from a 1.2 V supply. Measurement results indicate that the prototype chip is suitable for subarray beamforming with a 5 ns resolution digital mixing sequence. The IC presented here is the first known implementation of a mixer-based subarray beamformer for sub-Nyquist sampling in ultrasonic applications and is expected to reduce sampling data requirements by a factor of 32.</description><subject>Beamformer</subject><subject>Beamforming</subject><subject>CMOS</subject><subject>Compressed Sensing</subject><subject>Imaging</subject><subject>Integrated Circuit</subject><subject>Integrated circuits</subject><subject>Operational amplifiers</subject><subject>Power consumption</subject><subject>Sampling</subject><subject>Transconductance</subject><subject>Ultrasonic imaging</subject><subject>Ultrasound</subject><subject>Ultrasound imaging</subject><issn>0021-4922</issn><issn>1347-4065</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp9UE1LAzEUDKJgrf4AbwFPHmKTTbKbHq34BUUP1YuXkN281F32q0kX7L83dUUvIjwY3jDz3jAInTN6xaUSasa4yIigqZyZHAqVH6DJD3WIJpQmjIh5khyjkxCquKZSsAl6W5XtugZSvJc9bsoP8CQ3ASwOQ268Nzucg2lc5xvwOMKeJ0-7zVCGLQ6m6evox2WLh3rrTeiG1uKyMevInqIjZ-oAZ984Ra93ty83D2T5fP94c70kheDJlljJraJgrHNW0II7kEnMrNI0ZRZ4DlKA5UqAYNQBpSpxheJSMkvzee4yPkUX493ed5sBwlZX3eDb-FInkqkszZgUUcVGVeG7EDw43fsY1O80o_qrQr3vS-_70mOF0UNGT9n1v0f_01_-oa8q0-uU6tUizmJJle6t459NY4Mm</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Kanemoto, Daisuke</creator><creator>Spaulding, Jonathon</creator><creator>Murmann, Boris</creator><general>IOP Publishing</general><general>Japanese Journal of Applied Physics</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20210501</creationdate><title>Single-chip mixer-based subarray beamformer for sub-Nyquist sampling in ultrasound imaging</title><author>Kanemoto, Daisuke ; Spaulding, Jonathon ; Murmann, Boris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-d53d80eadffd40c3fe5206586661de3be54ed384e410fe0082fc83551d0b9bf73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Beamformer</topic><topic>Beamforming</topic><topic>CMOS</topic><topic>Compressed Sensing</topic><topic>Imaging</topic><topic>Integrated Circuit</topic><topic>Integrated circuits</topic><topic>Operational amplifiers</topic><topic>Power consumption</topic><topic>Sampling</topic><topic>Transconductance</topic><topic>Ultrasonic imaging</topic><topic>Ultrasound</topic><topic>Ultrasound imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kanemoto, Daisuke</creatorcontrib><creatorcontrib>Spaulding, Jonathon</creatorcontrib><creatorcontrib>Murmann, Boris</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Japanese Journal of Applied Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kanemoto, Daisuke</au><au>Spaulding, Jonathon</au><au>Murmann, Boris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single-chip mixer-based subarray beamformer for sub-Nyquist sampling in ultrasound imaging</atitle><jtitle>Japanese Journal of Applied Physics</jtitle><addtitle>Jpn. J. Appl. Phys</addtitle><date>2021-05-01</date><risdate>2021</risdate><volume>60</volume><issue>SB</issue><spage>SBBL08</spage><pages>SBBL08-</pages><issn>0021-4922</issn><eissn>1347-4065</eissn><coden>JJAPB6</coden><abstract>Compressed sensing (CS) has been proposed as a method of breaking the seemingly inherent tradeoff between sampling rate and resolution in a variety of applications, such as ultrasound imaging. Although various studies have demonstrated the effectiveness of using CS for sub-Nyquist sampling in ultrasound imaging, a dedicated integrated circuit (IC) has not yet been presented. This work introduces a single-chip mixer-based subarray beamformer, an important component for sub-Nyquist sampling in a CS ultrasound imaging system. The beamformer chip, which performs mixing, filtering, and summation of delayed signals within a subarray, is implemented using a single operational transconductance amplifier. We evaluated the performance of the proposed mixer-based subarray beamformer circuit fabricated using a 65 nm CMOS process with 0.4 mW ch −1 power consumption from a 1.2 V supply. Measurement results indicate that the prototype chip is suitable for subarray beamforming with a 5 ns resolution digital mixing sequence. The IC presented here is the first known implementation of a mixer-based subarray beamformer for sub-Nyquist sampling in ultrasonic applications and is expected to reduce sampling data requirements by a factor of 32.</abstract><cop>Tokyo</cop><pub>IOP Publishing</pub><doi>10.35848/1347-4065/abec8b</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-4922
ispartof Japanese Journal of Applied Physics, 2021-05, Vol.60 (SB), p.SBBL08
issn 0021-4922
1347-4065
language eng
recordid cdi_crossref_primary_10_35848_1347_4065_abec8b
source Institute of Physics Journals
subjects Beamformer
Beamforming
CMOS
Compressed Sensing
Imaging
Integrated Circuit
Integrated circuits
Operational amplifiers
Power consumption
Sampling
Transconductance
Ultrasonic imaging
Ultrasound
Ultrasound imaging
title Single-chip mixer-based subarray beamformer for sub-Nyquist sampling in ultrasound imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T14%3A00%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single-chip%20mixer-based%20subarray%20beamformer%20for%20sub-Nyquist%20sampling%20in%20ultrasound%20imaging&rft.jtitle=Japanese%20Journal%20of%20Applied%20Physics&rft.au=Kanemoto,%20Daisuke&rft.date=2021-05-01&rft.volume=60&rft.issue=SB&rft.spage=SBBL08&rft.pages=SBBL08-&rft.issn=0021-4922&rft.eissn=1347-4065&rft.coden=JJAPB6&rft_id=info:doi/10.35848/1347-4065/abec8b&rft_dat=%3Cproquest_cross%3E2518767154%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2518767154&rft_id=info:pmid/&rfr_iscdi=true