AUTOMATED QUALITY ASSESSMENT OF APPLES USING CONVOLUTIONAL NEURAL NETWORKS

Quality assessment of apples is a pivotal task in the agriculture and food industries, with direct implications for economic gains and consumer satisfaction. Traditional methods, whether manual, mechanical or electromechanical, face challenges in terms of labor intensity, speed, and quality control....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:INMATEH - Agricultural Engineering 2023-12, p.483-498
Hauptverfasser: IOSIF, Adrian, MAICAN, Edmond, BIRIȘ, Sorin, POPA, Lucretia
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 498
container_issue
container_start_page 483
container_title INMATEH - Agricultural Engineering
container_volume
creator IOSIF, Adrian
MAICAN, Edmond
BIRIȘ, Sorin
POPA, Lucretia
description Quality assessment of apples is a pivotal task in the agriculture and food industries, with direct implications for economic gains and consumer satisfaction. Traditional methods, whether manual, mechanical or electromechanical, face challenges in terms of labor intensity, speed, and quality control. This paper introduces a solution using machine learning algorithms – specifically, Convolutional Neural Networks (CNNs) – for a more nuanced and efficient apple quality assessment. Our approach offers a balance between the high-speed capabilities of electromechanical sorting and the detailed recognition achievable with human evaluation. A dataset consisting of over 2000 apple images, labeled as 'Good' or 'Damaged', was compiled for training and validation purposes. The paper investigates various architectures and hyperparameter settings for several CNN models to optimize performance metrics, such as accuracy, precision, and recall. Preliminary evaluations indicate that the MobileNet and Inception models yield the highest levels of accuracy, emphasizing the potential of machine learning algorithms to significantly enhance apple quality assessment processes. Such improvements can lead to greater efficiency, reduced labor costs, and more rigorous quality control measures.
doi_str_mv 10.35633/inmateh-71-42
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_35633_inmateh_71_42</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_35633_inmateh_71_42</sourcerecordid><originalsourceid>FETCH-LOGICAL-c279t-35d3e14e1f346c9977419e94c23546a5c8bf32aaa0ba0c44724e6c1a3fcf3bc33</originalsourceid><addsrcrecordid>eNotkEFPwyAYhonRxGXu6pk_0Al8tKxHMtmssjIHaDw1FGmccWraXfz3mtnT857eJ3kQuqZkDnkBcLP_PIRjessEzTg7QxNGikXGGJTn4-aM5pdoNgzvhBAmSk4JmaB76Z3ZSKdu8aOXunIvWFqrrN2o2mGzwnK71cpib6t6jZemfjLau8rUUuNa-d0J7tnsHuwVuujCx5BmI6fIr5Rb3mXarKul1Fn8sx4zyF8hUZ5oB7yIZSkEp2UqeWSQ8yLkcdF2wEIIpA0kci4YT0WkAbrYQRsBpmj-_xv7r2HoU9d89_tD6H8aSppTjGaM0QjacAa_gEhNvw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>AUTOMATED QUALITY ASSESSMENT OF APPLES USING CONVOLUTIONAL NEURAL NETWORKS</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>IOSIF, Adrian ; MAICAN, Edmond ; BIRIȘ, Sorin ; POPA, Lucretia</creator><creatorcontrib>IOSIF, Adrian ; MAICAN, Edmond ; BIRIȘ, Sorin ; POPA, Lucretia</creatorcontrib><description>Quality assessment of apples is a pivotal task in the agriculture and food industries, with direct implications for economic gains and consumer satisfaction. Traditional methods, whether manual, mechanical or electromechanical, face challenges in terms of labor intensity, speed, and quality control. This paper introduces a solution using machine learning algorithms – specifically, Convolutional Neural Networks (CNNs) – for a more nuanced and efficient apple quality assessment. Our approach offers a balance between the high-speed capabilities of electromechanical sorting and the detailed recognition achievable with human evaluation. A dataset consisting of over 2000 apple images, labeled as 'Good' or 'Damaged', was compiled for training and validation purposes. The paper investigates various architectures and hyperparameter settings for several CNN models to optimize performance metrics, such as accuracy, precision, and recall. Preliminary evaluations indicate that the MobileNet and Inception models yield the highest levels of accuracy, emphasizing the potential of machine learning algorithms to significantly enhance apple quality assessment processes. Such improvements can lead to greater efficiency, reduced labor costs, and more rigorous quality control measures.</description><identifier>ISSN: 2068-4215</identifier><identifier>EISSN: 2068-2239</identifier><identifier>DOI: 10.35633/inmateh-71-42</identifier><language>eng</language><ispartof>INMATEH - Agricultural Engineering, 2023-12, p.483-498</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c279t-35d3e14e1f346c9977419e94c23546a5c8bf32aaa0ba0c44724e6c1a3fcf3bc33</citedby><cites>FETCH-LOGICAL-c279t-35d3e14e1f346c9977419e94c23546a5c8bf32aaa0ba0c44724e6c1a3fcf3bc33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,27931,27932</link.rule.ids></links><search><creatorcontrib>IOSIF, Adrian</creatorcontrib><creatorcontrib>MAICAN, Edmond</creatorcontrib><creatorcontrib>BIRIȘ, Sorin</creatorcontrib><creatorcontrib>POPA, Lucretia</creatorcontrib><title>AUTOMATED QUALITY ASSESSMENT OF APPLES USING CONVOLUTIONAL NEURAL NETWORKS</title><title>INMATEH - Agricultural Engineering</title><description>Quality assessment of apples is a pivotal task in the agriculture and food industries, with direct implications for economic gains and consumer satisfaction. Traditional methods, whether manual, mechanical or electromechanical, face challenges in terms of labor intensity, speed, and quality control. This paper introduces a solution using machine learning algorithms – specifically, Convolutional Neural Networks (CNNs) – for a more nuanced and efficient apple quality assessment. Our approach offers a balance between the high-speed capabilities of electromechanical sorting and the detailed recognition achievable with human evaluation. A dataset consisting of over 2000 apple images, labeled as 'Good' or 'Damaged', was compiled for training and validation purposes. The paper investigates various architectures and hyperparameter settings for several CNN models to optimize performance metrics, such as accuracy, precision, and recall. Preliminary evaluations indicate that the MobileNet and Inception models yield the highest levels of accuracy, emphasizing the potential of machine learning algorithms to significantly enhance apple quality assessment processes. Such improvements can lead to greater efficiency, reduced labor costs, and more rigorous quality control measures.</description><issn>2068-4215</issn><issn>2068-2239</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotkEFPwyAYhonRxGXu6pk_0Al8tKxHMtmssjIHaDw1FGmccWraXfz3mtnT857eJ3kQuqZkDnkBcLP_PIRjessEzTg7QxNGikXGGJTn4-aM5pdoNgzvhBAmSk4JmaB76Z3ZSKdu8aOXunIvWFqrrN2o2mGzwnK71cpib6t6jZemfjLau8rUUuNa-d0J7tnsHuwVuujCx5BmI6fIr5Rb3mXarKul1Fn8sx4zyF8hUZ5oB7yIZSkEp2UqeWSQ8yLkcdF2wEIIpA0kci4YT0WkAbrYQRsBpmj-_xv7r2HoU9d89_tD6H8aSppTjGaM0QjacAa_gEhNvw</recordid><startdate>20231231</startdate><enddate>20231231</enddate><creator>IOSIF, Adrian</creator><creator>MAICAN, Edmond</creator><creator>BIRIȘ, Sorin</creator><creator>POPA, Lucretia</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20231231</creationdate><title>AUTOMATED QUALITY ASSESSMENT OF APPLES USING CONVOLUTIONAL NEURAL NETWORKS</title><author>IOSIF, Adrian ; MAICAN, Edmond ; BIRIȘ, Sorin ; POPA, Lucretia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c279t-35d3e14e1f346c9977419e94c23546a5c8bf32aaa0ba0c44724e6c1a3fcf3bc33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>IOSIF, Adrian</creatorcontrib><creatorcontrib>MAICAN, Edmond</creatorcontrib><creatorcontrib>BIRIȘ, Sorin</creatorcontrib><creatorcontrib>POPA, Lucretia</creatorcontrib><collection>CrossRef</collection><jtitle>INMATEH - Agricultural Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>IOSIF, Adrian</au><au>MAICAN, Edmond</au><au>BIRIȘ, Sorin</au><au>POPA, Lucretia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AUTOMATED QUALITY ASSESSMENT OF APPLES USING CONVOLUTIONAL NEURAL NETWORKS</atitle><jtitle>INMATEH - Agricultural Engineering</jtitle><date>2023-12-31</date><risdate>2023</risdate><spage>483</spage><epage>498</epage><pages>483-498</pages><issn>2068-4215</issn><eissn>2068-2239</eissn><abstract>Quality assessment of apples is a pivotal task in the agriculture and food industries, with direct implications for economic gains and consumer satisfaction. Traditional methods, whether manual, mechanical or electromechanical, face challenges in terms of labor intensity, speed, and quality control. This paper introduces a solution using machine learning algorithms – specifically, Convolutional Neural Networks (CNNs) – for a more nuanced and efficient apple quality assessment. Our approach offers a balance between the high-speed capabilities of electromechanical sorting and the detailed recognition achievable with human evaluation. A dataset consisting of over 2000 apple images, labeled as 'Good' or 'Damaged', was compiled for training and validation purposes. The paper investigates various architectures and hyperparameter settings for several CNN models to optimize performance metrics, such as accuracy, precision, and recall. Preliminary evaluations indicate that the MobileNet and Inception models yield the highest levels of accuracy, emphasizing the potential of machine learning algorithms to significantly enhance apple quality assessment processes. Such improvements can lead to greater efficiency, reduced labor costs, and more rigorous quality control measures.</abstract><doi>10.35633/inmateh-71-42</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2068-4215
ispartof INMATEH - Agricultural Engineering, 2023-12, p.483-498
issn 2068-4215
2068-2239
language eng
recordid cdi_crossref_primary_10_35633_inmateh_71_42
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title AUTOMATED QUALITY ASSESSMENT OF APPLES USING CONVOLUTIONAL NEURAL NETWORKS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T21%3A09%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AUTOMATED%20QUALITY%20ASSESSMENT%20OF%20APPLES%20USING%20CONVOLUTIONAL%20NEURAL%20NETWORKS&rft.jtitle=INMATEH%20-%20Agricultural%20Engineering&rft.au=IOSIF,%20Adrian&rft.date=2023-12-31&rft.spage=483&rft.epage=498&rft.pages=483-498&rft.issn=2068-4215&rft.eissn=2068-2239&rft_id=info:doi/10.35633/inmateh-71-42&rft_dat=%3Ccrossref%3E10_35633_inmateh_71_42%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true