Degree Subtraction Adjacency Polynomial and Energy of Graphs obtained from Complete Graph

The degree subtraction adjacency matrix of a graph G is a square matrix DSA(G)=[dij], in which dij=d(vi)-d(vj), if the vertices vi and vj are adjacent and dij=0, otherwise, where d(u) is the degree of a vertex u. The DSA energy of a graph is the sum of the absolute values of the eigenvalues of DSA m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Earthline Journal of Mathematical Sciences 2020-03, p.263-277
Hauptverfasser: Ramane, Harishchandra S., Maraddi, Hemaraddi N., Patil, Daneshwari, Bhajantri, Kavita
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 277
container_issue
container_start_page 263
container_title Earthline Journal of Mathematical Sciences
container_volume
creator Ramane, Harishchandra S.
Maraddi, Hemaraddi N.
Patil, Daneshwari
Bhajantri, Kavita
description The degree subtraction adjacency matrix of a graph G is a square matrix DSA(G)=[dij], in which dij=d(vi)-d(vj), if the vertices vi and vj are adjacent and dij=0, otherwise, where d(u) is the degree of a vertex u. The DSA energy of a graph is the sum of the absolute values of the eigenvalues of DSA matrix. In this paper, we obtain the characteristic polynomial of the DSA matrix of graphs obtained from the complete graph. Further we study the DSA energy of these graphs.
doi_str_mv 10.34198/ejms.3220.263277
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_34198_ejms_3220_263277</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_34198_ejms_3220_263277</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_34198_ejms_3220_2632773</originalsourceid><addsrcrecordid>eNqdz71uwjAUBWALFQlUeAC2-wKk_glOGCtK6VipLEyWk9yAUWxH1-mQt68oHZg7nSMdneFjbCV4pnKxLV_w6lOmpOSZ1EoWxYTN5aYU61LkxdNDn7FlSq7iudZCK83n7PSGZ0KEr-9qIFsPLgZ4ba62xlCP8Bm7MUTvbAc2NLAPSOcRYgsHsv0lQawG6wI20FL0sIu-73DA-7pg09Z2CZd_-czE-_64-1jXFFMibE1PzlsajeDml2FuDHNjmDtD_efzA6QnUkE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Degree Subtraction Adjacency Polynomial and Energy of Graphs obtained from Complete Graph</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Ramane, Harishchandra S. ; Maraddi, Hemaraddi N. ; Patil, Daneshwari ; Bhajantri, Kavita</creator><creatorcontrib>Ramane, Harishchandra S. ; Maraddi, Hemaraddi N. ; Patil, Daneshwari ; Bhajantri, Kavita</creatorcontrib><description>The degree subtraction adjacency matrix of a graph G is a square matrix DSA(G)=[dij], in which dij=d(vi)-d(vj), if the vertices vi and vj are adjacent and dij=0, otherwise, where d(u) is the degree of a vertex u. The DSA energy of a graph is the sum of the absolute values of the eigenvalues of DSA matrix. In this paper, we obtain the characteristic polynomial of the DSA matrix of graphs obtained from the complete graph. Further we study the DSA energy of these graphs.</description><identifier>ISSN: 2581-8147</identifier><identifier>EISSN: 2581-8147</identifier><identifier>DOI: 10.34198/ejms.3220.263277</identifier><language>eng</language><ispartof>Earthline Journal of Mathematical Sciences, 2020-03, p.263-277</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-crossref_primary_10_34198_ejms_3220_2632773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ramane, Harishchandra S.</creatorcontrib><creatorcontrib>Maraddi, Hemaraddi N.</creatorcontrib><creatorcontrib>Patil, Daneshwari</creatorcontrib><creatorcontrib>Bhajantri, Kavita</creatorcontrib><title>Degree Subtraction Adjacency Polynomial and Energy of Graphs obtained from Complete Graph</title><title>Earthline Journal of Mathematical Sciences</title><description>The degree subtraction adjacency matrix of a graph G is a square matrix DSA(G)=[dij], in which dij=d(vi)-d(vj), if the vertices vi and vj are adjacent and dij=0, otherwise, where d(u) is the degree of a vertex u. The DSA energy of a graph is the sum of the absolute values of the eigenvalues of DSA matrix. In this paper, we obtain the characteristic polynomial of the DSA matrix of graphs obtained from the complete graph. Further we study the DSA energy of these graphs.</description><issn>2581-8147</issn><issn>2581-8147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqdz71uwjAUBWALFQlUeAC2-wKk_glOGCtK6VipLEyWk9yAUWxH1-mQt68oHZg7nSMdneFjbCV4pnKxLV_w6lOmpOSZ1EoWxYTN5aYU61LkxdNDn7FlSq7iudZCK83n7PSGZ0KEr-9qIFsPLgZ4ba62xlCP8Bm7MUTvbAc2NLAPSOcRYgsHsv0lQawG6wI20FL0sIu-73DA-7pg09Z2CZd_-czE-_64-1jXFFMibE1PzlsajeDml2FuDHNjmDtD_efzA6QnUkE</recordid><startdate>20200306</startdate><enddate>20200306</enddate><creator>Ramane, Harishchandra S.</creator><creator>Maraddi, Hemaraddi N.</creator><creator>Patil, Daneshwari</creator><creator>Bhajantri, Kavita</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200306</creationdate><title>Degree Subtraction Adjacency Polynomial and Energy of Graphs obtained from Complete Graph</title><author>Ramane, Harishchandra S. ; Maraddi, Hemaraddi N. ; Patil, Daneshwari ; Bhajantri, Kavita</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_34198_ejms_3220_2632773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Ramane, Harishchandra S.</creatorcontrib><creatorcontrib>Maraddi, Hemaraddi N.</creatorcontrib><creatorcontrib>Patil, Daneshwari</creatorcontrib><creatorcontrib>Bhajantri, Kavita</creatorcontrib><collection>CrossRef</collection><jtitle>Earthline Journal of Mathematical Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramane, Harishchandra S.</au><au>Maraddi, Hemaraddi N.</au><au>Patil, Daneshwari</au><au>Bhajantri, Kavita</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Degree Subtraction Adjacency Polynomial and Energy of Graphs obtained from Complete Graph</atitle><jtitle>Earthline Journal of Mathematical Sciences</jtitle><date>2020-03-06</date><risdate>2020</risdate><spage>263</spage><epage>277</epage><pages>263-277</pages><issn>2581-8147</issn><eissn>2581-8147</eissn><abstract>The degree subtraction adjacency matrix of a graph G is a square matrix DSA(G)=[dij], in which dij=d(vi)-d(vj), if the vertices vi and vj are adjacent and dij=0, otherwise, where d(u) is the degree of a vertex u. The DSA energy of a graph is the sum of the absolute values of the eigenvalues of DSA matrix. In this paper, we obtain the characteristic polynomial of the DSA matrix of graphs obtained from the complete graph. Further we study the DSA energy of these graphs.</abstract><doi>10.34198/ejms.3220.263277</doi></addata></record>
fulltext fulltext
identifier ISSN: 2581-8147
ispartof Earthline Journal of Mathematical Sciences, 2020-03, p.263-277
issn 2581-8147
2581-8147
language eng
recordid cdi_crossref_primary_10_34198_ejms_3220_263277
source EZB-FREE-00999 freely available EZB journals
title Degree Subtraction Adjacency Polynomial and Energy of Graphs obtained from Complete Graph
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T22%3A05%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Degree%20Subtraction%20Adjacency%20Polynomial%20and%20Energy%20of%20Graphs%20obtained%20from%20Complete%20Graph&rft.jtitle=Earthline%20Journal%20of%20Mathematical%20Sciences&rft.au=Ramane,%20Harishchandra%20S.&rft.date=2020-03-06&rft.spage=263&rft.epage=277&rft.pages=263-277&rft.issn=2581-8147&rft.eissn=2581-8147&rft_id=info:doi/10.34198/ejms.3220.263277&rft_dat=%3Ccrossref%3E10_34198_ejms_3220_263277%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true