3D Scanning and Model Error Distribution-Based Characterisation of Welding Defects

The inspection of welded structures requires particular attention due to many aspects that define the quality of the product. Deciding on the suitability of welds is a complex process. This work aims to propose a method that can support this qualification. This paper presents a state-of-the-art data...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hungarian journal of industrial chemistry 2021, Vol.49 (2), p.3-7
Hauptverfasser: Hegedűs-Kuti, János, Szőlősi, József, Varga, Dániel, Farkas, Gábor, Ruppert, Tamás, Abonyi, János, Andó, Mátyás
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7
container_issue 2
container_start_page 3
container_title Hungarian journal of industrial chemistry
container_volume 49
creator Hegedűs-Kuti, János
Szőlősi, József
Varga, Dániel
Farkas, Gábor
Ruppert, Tamás
Abonyi, János
Andó, Mátyás
description The inspection of welded structures requires particular attention due to many aspects that define the quality of the product. Deciding on the suitability of welds is a complex process. This work aims to propose a method that can support this qualification. This paper presents a state-of-the-art data-driven evaluation method and its application in the quality assessment of welds. Image processing and CAD modelling software was applied to generate a reference using the Iterative Closest Point algorithm that can be used to generate datasets which represent the model errors. The results demonstrate that the distribution of these variables characterises the typical welding defects. Based on the automated analysis of these distributions, it is possible to reduce the turnaround time of testing, thereby improving the productivity of welding processes.
doi_str_mv 10.33927/hjic-2021-13
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_33927_hjic_2021_13</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_33927_hjic_2021_13</sourcerecordid><originalsourceid>FETCH-LOGICAL-c123t-c54dc286a68a2793c0dd4ecdbf384af0ab19bf0d6f326efcc97480f05bbfbe433</originalsourceid><addsrcrecordid>eNot0EtLxDAUBeAgCpZxlu7zB6I3uWnaLrUdHWFE8IHLkqeTobaS1IX_XquuDhw4Z_ERcs7hArER1eX-EC0TIDjjeEQKIUtgJQdxTArgiAxEpU7JOucDAPBSCSGxII_Y0SerxzGOb1SPjt5Pzg90k9KUaBfznKL5nOM0smudvaPtXidtZ59i1ktNp0Bf_eCWeeeDt3M-IydBD9mv_3NFXm42z-2W7R5u79qrHbNc4MxsKZ0VtdKq1qJq0IJz0ltnAtZSB9CGNyaAUwGF8sHappI1BCiNCcZLxBVhf782TTknH_qPFN91-uo59L8m_WLSLyb9j8A39IpV_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>3D Scanning and Model Error Distribution-Based Characterisation of Welding Defects</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Hegedűs-Kuti, János ; Szőlősi, József ; Varga, Dániel ; Farkas, Gábor ; Ruppert, Tamás ; Abonyi, János ; Andó, Mátyás</creator><creatorcontrib>Hegedűs-Kuti, János ; Szőlősi, József ; Varga, Dániel ; Farkas, Gábor ; Ruppert, Tamás ; Abonyi, János ; Andó, Mátyás</creatorcontrib><description>The inspection of welded structures requires particular attention due to many aspects that define the quality of the product. Deciding on the suitability of welds is a complex process. This work aims to propose a method that can support this qualification. This paper presents a state-of-the-art data-driven evaluation method and its application in the quality assessment of welds. Image processing and CAD modelling software was applied to generate a reference using the Iterative Closest Point algorithm that can be used to generate datasets which represent the model errors. The results demonstrate that the distribution of these variables characterises the typical welding defects. Based on the automated analysis of these distributions, it is possible to reduce the turnaround time of testing, thereby improving the productivity of welding processes.</description><identifier>ISSN: 0133-0276</identifier><identifier>EISSN: 2450-5102</identifier><identifier>DOI: 10.33927/hjic-2021-13</identifier><language>eng</language><ispartof>Hungarian journal of industrial chemistry, 2021, Vol.49 (2), p.3-7</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Hegedűs-Kuti, János</creatorcontrib><creatorcontrib>Szőlősi, József</creatorcontrib><creatorcontrib>Varga, Dániel</creatorcontrib><creatorcontrib>Farkas, Gábor</creatorcontrib><creatorcontrib>Ruppert, Tamás</creatorcontrib><creatorcontrib>Abonyi, János</creatorcontrib><creatorcontrib>Andó, Mátyás</creatorcontrib><title>3D Scanning and Model Error Distribution-Based Characterisation of Welding Defects</title><title>Hungarian journal of industrial chemistry</title><description>The inspection of welded structures requires particular attention due to many aspects that define the quality of the product. Deciding on the suitability of welds is a complex process. This work aims to propose a method that can support this qualification. This paper presents a state-of-the-art data-driven evaluation method and its application in the quality assessment of welds. Image processing and CAD modelling software was applied to generate a reference using the Iterative Closest Point algorithm that can be used to generate datasets which represent the model errors. The results demonstrate that the distribution of these variables characterises the typical welding defects. Based on the automated analysis of these distributions, it is possible to reduce the turnaround time of testing, thereby improving the productivity of welding processes.</description><issn>0133-0276</issn><issn>2450-5102</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNot0EtLxDAUBeAgCpZxlu7zB6I3uWnaLrUdHWFE8IHLkqeTobaS1IX_XquuDhw4Z_ERcs7hArER1eX-EC0TIDjjeEQKIUtgJQdxTArgiAxEpU7JOucDAPBSCSGxII_Y0SerxzGOb1SPjt5Pzg90k9KUaBfznKL5nOM0smudvaPtXidtZ59i1ktNp0Bf_eCWeeeDt3M-IydBD9mv_3NFXm42z-2W7R5u79qrHbNc4MxsKZ0VtdKq1qJq0IJz0ltnAtZSB9CGNyaAUwGF8sHappI1BCiNCcZLxBVhf782TTknH_qPFN91-uo59L8m_WLSLyb9j8A39IpV_w</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Hegedűs-Kuti, János</creator><creator>Szőlősi, József</creator><creator>Varga, Dániel</creator><creator>Farkas, Gábor</creator><creator>Ruppert, Tamás</creator><creator>Abonyi, János</creator><creator>Andó, Mátyás</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2021</creationdate><title>3D Scanning and Model Error Distribution-Based Characterisation of Welding Defects</title><author>Hegedűs-Kuti, János ; Szőlősi, József ; Varga, Dániel ; Farkas, Gábor ; Ruppert, Tamás ; Abonyi, János ; Andó, Mátyás</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c123t-c54dc286a68a2793c0dd4ecdbf384af0ab19bf0d6f326efcc97480f05bbfbe433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hegedűs-Kuti, János</creatorcontrib><creatorcontrib>Szőlősi, József</creatorcontrib><creatorcontrib>Varga, Dániel</creatorcontrib><creatorcontrib>Farkas, Gábor</creatorcontrib><creatorcontrib>Ruppert, Tamás</creatorcontrib><creatorcontrib>Abonyi, János</creatorcontrib><creatorcontrib>Andó, Mátyás</creatorcontrib><collection>CrossRef</collection><jtitle>Hungarian journal of industrial chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hegedűs-Kuti, János</au><au>Szőlősi, József</au><au>Varga, Dániel</au><au>Farkas, Gábor</au><au>Ruppert, Tamás</au><au>Abonyi, János</au><au>Andó, Mátyás</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D Scanning and Model Error Distribution-Based Characterisation of Welding Defects</atitle><jtitle>Hungarian journal of industrial chemistry</jtitle><date>2021</date><risdate>2021</risdate><volume>49</volume><issue>2</issue><spage>3</spage><epage>7</epage><pages>3-7</pages><issn>0133-0276</issn><eissn>2450-5102</eissn><abstract>The inspection of welded structures requires particular attention due to many aspects that define the quality of the product. Deciding on the suitability of welds is a complex process. This work aims to propose a method that can support this qualification. This paper presents a state-of-the-art data-driven evaluation method and its application in the quality assessment of welds. Image processing and CAD modelling software was applied to generate a reference using the Iterative Closest Point algorithm that can be used to generate datasets which represent the model errors. The results demonstrate that the distribution of these variables characterises the typical welding defects. Based on the automated analysis of these distributions, it is possible to reduce the turnaround time of testing, thereby improving the productivity of welding processes.</abstract><doi>10.33927/hjic-2021-13</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0133-0276
ispartof Hungarian journal of industrial chemistry, 2021, Vol.49 (2), p.3-7
issn 0133-0276
2450-5102
language eng
recordid cdi_crossref_primary_10_33927_hjic_2021_13
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title 3D Scanning and Model Error Distribution-Based Characterisation of Welding Defects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T17%3A10%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20Scanning%20and%20Model%20Error%20Distribution-Based%20Characterisation%20of%20Welding%20Defects&rft.jtitle=Hungarian%20journal%20of%20industrial%20chemistry&rft.au=Heged%C5%B1s-Kuti,%20J%C3%A1nos&rft.date=2021&rft.volume=49&rft.issue=2&rft.spage=3&rft.epage=7&rft.pages=3-7&rft.issn=0133-0276&rft.eissn=2450-5102&rft_id=info:doi/10.33927/hjic-2021-13&rft_dat=%3Ccrossref%3E10_33927_hjic_2021_13%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true