3D Scanning and Model Error Distribution-Based Characterisation of Welding Defects
The inspection of welded structures requires particular attention due to many aspects that define the quality of the product. Deciding on the suitability of welds is a complex process. This work aims to propose a method that can support this qualification. This paper presents a state-of-the-art data...
Gespeichert in:
Veröffentlicht in: | Hungarian journal of industrial chemistry 2021, Vol.49 (2), p.3-7 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7 |
---|---|
container_issue | 2 |
container_start_page | 3 |
container_title | Hungarian journal of industrial chemistry |
container_volume | 49 |
creator | Hegedűs-Kuti, János Szőlősi, József Varga, Dániel Farkas, Gábor Ruppert, Tamás Abonyi, János Andó, Mátyás |
description | The inspection of welded structures requires particular attention due to many aspects that define the quality of the product. Deciding on the suitability of welds is a complex process. This work aims to propose a method that can support this qualification. This paper presents a state-of-the-art data-driven evaluation method and its application in the quality assessment of welds. Image processing and CAD modelling software was applied to generate a reference using the Iterative Closest Point algorithm that can be used to generate datasets which represent the model errors. The results demonstrate that the distribution of these variables characterises the typical welding defects. Based on the automated analysis of these distributions, it is possible to reduce the turnaround time of testing, thereby improving the productivity of welding processes. |
doi_str_mv | 10.33927/hjic-2021-13 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_33927_hjic_2021_13</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_33927_hjic_2021_13</sourcerecordid><originalsourceid>FETCH-LOGICAL-c123t-c54dc286a68a2793c0dd4ecdbf384af0ab19bf0d6f326efcc97480f05bbfbe433</originalsourceid><addsrcrecordid>eNot0EtLxDAUBeAgCpZxlu7zB6I3uWnaLrUdHWFE8IHLkqeTobaS1IX_XquuDhw4Z_ERcs7hArER1eX-EC0TIDjjeEQKIUtgJQdxTArgiAxEpU7JOucDAPBSCSGxII_Y0SerxzGOb1SPjt5Pzg90k9KUaBfznKL5nOM0smudvaPtXidtZ59i1ktNp0Bf_eCWeeeDt3M-IydBD9mv_3NFXm42z-2W7R5u79qrHbNc4MxsKZ0VtdKq1qJq0IJz0ltnAtZSB9CGNyaAUwGF8sHappI1BCiNCcZLxBVhf782TTknH_qPFN91-uo59L8m_WLSLyb9j8A39IpV_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>3D Scanning and Model Error Distribution-Based Characterisation of Welding Defects</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Hegedűs-Kuti, János ; Szőlősi, József ; Varga, Dániel ; Farkas, Gábor ; Ruppert, Tamás ; Abonyi, János ; Andó, Mátyás</creator><creatorcontrib>Hegedűs-Kuti, János ; Szőlősi, József ; Varga, Dániel ; Farkas, Gábor ; Ruppert, Tamás ; Abonyi, János ; Andó, Mátyás</creatorcontrib><description>The inspection of welded structures requires particular attention due to many aspects that define the quality of the product. Deciding on the suitability of welds is a complex process. This work aims to propose a method that can support this qualification. This paper presents a state-of-the-art data-driven evaluation method and its application in the quality assessment of welds. Image processing and CAD modelling software was applied to generate a reference using the Iterative Closest Point algorithm that can be used to generate datasets which represent the model errors. The results demonstrate that the distribution of these variables characterises the typical welding defects. Based on the automated analysis of these distributions, it is possible to reduce the turnaround time of testing, thereby improving the productivity of welding processes.</description><identifier>ISSN: 0133-0276</identifier><identifier>EISSN: 2450-5102</identifier><identifier>DOI: 10.33927/hjic-2021-13</identifier><language>eng</language><ispartof>Hungarian journal of industrial chemistry, 2021, Vol.49 (2), p.3-7</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Hegedűs-Kuti, János</creatorcontrib><creatorcontrib>Szőlősi, József</creatorcontrib><creatorcontrib>Varga, Dániel</creatorcontrib><creatorcontrib>Farkas, Gábor</creatorcontrib><creatorcontrib>Ruppert, Tamás</creatorcontrib><creatorcontrib>Abonyi, János</creatorcontrib><creatorcontrib>Andó, Mátyás</creatorcontrib><title>3D Scanning and Model Error Distribution-Based Characterisation of Welding Defects</title><title>Hungarian journal of industrial chemistry</title><description>The inspection of welded structures requires particular attention due to many aspects that define the quality of the product. Deciding on the suitability of welds is a complex process. This work aims to propose a method that can support this qualification. This paper presents a state-of-the-art data-driven evaluation method and its application in the quality assessment of welds. Image processing and CAD modelling software was applied to generate a reference using the Iterative Closest Point algorithm that can be used to generate datasets which represent the model errors. The results demonstrate that the distribution of these variables characterises the typical welding defects. Based on the automated analysis of these distributions, it is possible to reduce the turnaround time of testing, thereby improving the productivity of welding processes.</description><issn>0133-0276</issn><issn>2450-5102</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNot0EtLxDAUBeAgCpZxlu7zB6I3uWnaLrUdHWFE8IHLkqeTobaS1IX_XquuDhw4Z_ERcs7hArER1eX-EC0TIDjjeEQKIUtgJQdxTArgiAxEpU7JOucDAPBSCSGxII_Y0SerxzGOb1SPjt5Pzg90k9KUaBfznKL5nOM0smudvaPtXidtZ59i1ktNp0Bf_eCWeeeDt3M-IydBD9mv_3NFXm42z-2W7R5u79qrHbNc4MxsKZ0VtdKq1qJq0IJz0ltnAtZSB9CGNyaAUwGF8sHappI1BCiNCcZLxBVhf782TTknH_qPFN91-uo59L8m_WLSLyb9j8A39IpV_w</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Hegedűs-Kuti, János</creator><creator>Szőlősi, József</creator><creator>Varga, Dániel</creator><creator>Farkas, Gábor</creator><creator>Ruppert, Tamás</creator><creator>Abonyi, János</creator><creator>Andó, Mátyás</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2021</creationdate><title>3D Scanning and Model Error Distribution-Based Characterisation of Welding Defects</title><author>Hegedűs-Kuti, János ; Szőlősi, József ; Varga, Dániel ; Farkas, Gábor ; Ruppert, Tamás ; Abonyi, János ; Andó, Mátyás</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c123t-c54dc286a68a2793c0dd4ecdbf384af0ab19bf0d6f326efcc97480f05bbfbe433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hegedűs-Kuti, János</creatorcontrib><creatorcontrib>Szőlősi, József</creatorcontrib><creatorcontrib>Varga, Dániel</creatorcontrib><creatorcontrib>Farkas, Gábor</creatorcontrib><creatorcontrib>Ruppert, Tamás</creatorcontrib><creatorcontrib>Abonyi, János</creatorcontrib><creatorcontrib>Andó, Mátyás</creatorcontrib><collection>CrossRef</collection><jtitle>Hungarian journal of industrial chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hegedűs-Kuti, János</au><au>Szőlősi, József</au><au>Varga, Dániel</au><au>Farkas, Gábor</au><au>Ruppert, Tamás</au><au>Abonyi, János</au><au>Andó, Mátyás</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D Scanning and Model Error Distribution-Based Characterisation of Welding Defects</atitle><jtitle>Hungarian journal of industrial chemistry</jtitle><date>2021</date><risdate>2021</risdate><volume>49</volume><issue>2</issue><spage>3</spage><epage>7</epage><pages>3-7</pages><issn>0133-0276</issn><eissn>2450-5102</eissn><abstract>The inspection of welded structures requires particular attention due to many aspects that define the quality of the product. Deciding on the suitability of welds is a complex process. This work aims to propose a method that can support this qualification. This paper presents a state-of-the-art data-driven evaluation method and its application in the quality assessment of welds. Image processing and CAD modelling software was applied to generate a reference using the Iterative Closest Point algorithm that can be used to generate datasets which represent the model errors. The results demonstrate that the distribution of these variables characterises the typical welding defects. Based on the automated analysis of these distributions, it is possible to reduce the turnaround time of testing, thereby improving the productivity of welding processes.</abstract><doi>10.33927/hjic-2021-13</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0133-0276 |
ispartof | Hungarian journal of industrial chemistry, 2021, Vol.49 (2), p.3-7 |
issn | 0133-0276 2450-5102 |
language | eng |
recordid | cdi_crossref_primary_10_33927_hjic_2021_13 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
title | 3D Scanning and Model Error Distribution-Based Characterisation of Welding Defects |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T17%3A10%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20Scanning%20and%20Model%20Error%20Distribution-Based%20Characterisation%20of%20Welding%20Defects&rft.jtitle=Hungarian%20journal%20of%20industrial%20chemistry&rft.au=Heged%C5%B1s-Kuti,%20J%C3%A1nos&rft.date=2021&rft.volume=49&rft.issue=2&rft.spage=3&rft.epage=7&rft.pages=3-7&rft.issn=0133-0276&rft.eissn=2450-5102&rft_id=info:doi/10.33927/hjic-2021-13&rft_dat=%3Ccrossref%3E10_33927_hjic_2021_13%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |