Digital-Twin-Based Management of Sewer Systems: Research Strategy for the KaSyTwin Project
Sewer infrastructure is vital for flood prevention, environmental protection, and public health. As part of sewer infrastructure, sewer systems are prone to degradation. Traditional maintenance methods for sewer systems are largely manual and reactive and rely on inconsistent data, leading to ineffi...
Gespeichert in:
Veröffentlicht in: | Water (Basel) 2025-01, Vol.17 (3), p.299 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 299 |
container_title | Water (Basel) |
container_volume | 17 |
creator | Hartmann, Sabine Valles, Raquel Schmitt, Annette Al-Zuriqat, Thamer Dragos, Kosmas Gölzhäuser, Peter Jung, Jan Thomas Villinger, Georg Varela Rojas, Diana Bergmann, Matthias Pullmann, Torben Heimer, Dirk Stahl, Christoph Stollewerk, Axel Hilgers, Michael Jansen, Eva Schoenebeck, Brigitte Buchholz, Oliver Papadakis, Ioannis Merkle, Dominik Robert Jäkel, Jan-Iwo Mackenbach, Sven Klemt-Albert, Katharina Reiterer, Alexander Smarsly, Kay |
description | Sewer infrastructure is vital for flood prevention, environmental protection, and public health. As part of sewer infrastructure, sewer systems are prone to degradation. Traditional maintenance methods for sewer systems are largely manual and reactive and rely on inconsistent data, leading to inefficient maintenance. The KaSyTwin research project addresses the urgent need for efficient and resilient sewer system management methods in Germany, aiming to develop a methodology for the semi-automated development and utilization of digital twins of sewer systems to enhance data availability and operational resilience. Using advanced multi-sensor robotic platforms equipped with scanning and imaging systems, i.e., laser scanners and cameras, as well as artificial intelligence (AI), the KaSyTwin research project focuses on generating digital twin-enabled representations of sewer systems in real time. As a project report, this work outlines the research framework and proposed methodologies in the KaSyTwin research project. Digital twins of sewer systems integrated with AI technologies are expected to facilitate proactive maintenance, resilience forecasting against extreme weather events, and real-time damage detection. Furthermore, the KaSyTwin research project aspires to advance the digital management of sewer systems, ensuring long-term functionality and public welfare via on-demand structural health monitoring and non-destructive testing. |
doi_str_mv | 10.3390/w17030299 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_3390_w17030299</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3165914935</sourcerecordid><originalsourceid>FETCH-LOGICAL-c625-4d216519898d3a608eb7b47d1cf8eda44d0c4bce05e15e05107f3b486f34d3c23</originalsourceid><addsrcrecordid>eNpNkD9PwzAUxC0EElXpwDewxMQQsGMnsdmg_BVFIJKJJXLs5zZRmxTbVZRvT6oixA3vbjj9nnQInVNyxZgk1z3NCCOxlEdoEpOMRZxzevwvn6KZ9w0ZxaUQCZmgr_t6WQe1joq-bqM75cHgN9WqJWygDbizOIceHM4HH2Djb_AneFBOr3AenAqwHLDtHA4rwK8qH_YU_OG6BnQ4QydWrT3Mfn2KiseHYv4cLd6fXua3i0incRJxE9M0oVJIYZhKiYAqq3hmqLYCjOLcEM0rDSQBmoyXksyyiovUMm6YjtkUXRywW9d978CHsul2rh0_lmwkS8olS8bW5aGlXee9A1tuXb1RbigpKffjlX_jsR8TI2AV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3165914935</pqid></control><display><type>article</type><title>Digital-Twin-Based Management of Sewer Systems: Research Strategy for the KaSyTwin Project</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Hartmann, Sabine ; Valles, Raquel ; Schmitt, Annette ; Al-Zuriqat, Thamer ; Dragos, Kosmas ; Gölzhäuser, Peter ; Jung, Jan Thomas ; Villinger, Georg ; Varela Rojas, Diana ; Bergmann, Matthias ; Pullmann, Torben ; Heimer, Dirk ; Stahl, Christoph ; Stollewerk, Axel ; Hilgers, Michael ; Jansen, Eva ; Schoenebeck, Brigitte ; Buchholz, Oliver ; Papadakis, Ioannis ; Merkle, Dominik Robert ; Jäkel, Jan-Iwo ; Mackenbach, Sven ; Klemt-Albert, Katharina ; Reiterer, Alexander ; Smarsly, Kay</creator><creatorcontrib>Hartmann, Sabine ; Valles, Raquel ; Schmitt, Annette ; Al-Zuriqat, Thamer ; Dragos, Kosmas ; Gölzhäuser, Peter ; Jung, Jan Thomas ; Villinger, Georg ; Varela Rojas, Diana ; Bergmann, Matthias ; Pullmann, Torben ; Heimer, Dirk ; Stahl, Christoph ; Stollewerk, Axel ; Hilgers, Michael ; Jansen, Eva ; Schoenebeck, Brigitte ; Buchholz, Oliver ; Papadakis, Ioannis ; Merkle, Dominik Robert ; Jäkel, Jan-Iwo ; Mackenbach, Sven ; Klemt-Albert, Katharina ; Reiterer, Alexander ; Smarsly, Kay</creatorcontrib><description>Sewer infrastructure is vital for flood prevention, environmental protection, and public health. As part of sewer infrastructure, sewer systems are prone to degradation. Traditional maintenance methods for sewer systems are largely manual and reactive and rely on inconsistent data, leading to inefficient maintenance. The KaSyTwin research project addresses the urgent need for efficient and resilient sewer system management methods in Germany, aiming to develop a methodology for the semi-automated development and utilization of digital twins of sewer systems to enhance data availability and operational resilience. Using advanced multi-sensor robotic platforms equipped with scanning and imaging systems, i.e., laser scanners and cameras, as well as artificial intelligence (AI), the KaSyTwin research project focuses on generating digital twin-enabled representations of sewer systems in real time. As a project report, this work outlines the research framework and proposed methodologies in the KaSyTwin research project. Digital twins of sewer systems integrated with AI technologies are expected to facilitate proactive maintenance, resilience forecasting against extreme weather events, and real-time damage detection. Furthermore, the KaSyTwin research project aspires to advance the digital management of sewer systems, ensuring long-term functionality and public welfare via on-demand structural health monitoring and non-destructive testing.</description><identifier>ISSN: 2073-4441</identifier><identifier>EISSN: 2073-4441</identifier><identifier>DOI: 10.3390/w17030299</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Artificial intelligence ; Automation ; Building information modeling ; Data analysis ; Data processing ; Digital twins ; Infrastructure ; Lasers ; Robotics ; Sensors ; Sewer systems ; Water treatment</subject><ispartof>Water (Basel), 2025-01, Vol.17 (3), p.299</ispartof><rights>2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c625-4d216519898d3a608eb7b47d1cf8eda44d0c4bce05e15e05107f3b486f34d3c23</cites><orcidid>0000-0003-2736-3648 ; 0000-0002-3482-2251 ; 0009-0002-3036-8386 ; 0000-0002-0788-1387 ; 0000-0002-3196-3876 ; 0000-0001-7228-3503 ; 0009-0001-5400-2816</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Hartmann, Sabine</creatorcontrib><creatorcontrib>Valles, Raquel</creatorcontrib><creatorcontrib>Schmitt, Annette</creatorcontrib><creatorcontrib>Al-Zuriqat, Thamer</creatorcontrib><creatorcontrib>Dragos, Kosmas</creatorcontrib><creatorcontrib>Gölzhäuser, Peter</creatorcontrib><creatorcontrib>Jung, Jan Thomas</creatorcontrib><creatorcontrib>Villinger, Georg</creatorcontrib><creatorcontrib>Varela Rojas, Diana</creatorcontrib><creatorcontrib>Bergmann, Matthias</creatorcontrib><creatorcontrib>Pullmann, Torben</creatorcontrib><creatorcontrib>Heimer, Dirk</creatorcontrib><creatorcontrib>Stahl, Christoph</creatorcontrib><creatorcontrib>Stollewerk, Axel</creatorcontrib><creatorcontrib>Hilgers, Michael</creatorcontrib><creatorcontrib>Jansen, Eva</creatorcontrib><creatorcontrib>Schoenebeck, Brigitte</creatorcontrib><creatorcontrib>Buchholz, Oliver</creatorcontrib><creatorcontrib>Papadakis, Ioannis</creatorcontrib><creatorcontrib>Merkle, Dominik Robert</creatorcontrib><creatorcontrib>Jäkel, Jan-Iwo</creatorcontrib><creatorcontrib>Mackenbach, Sven</creatorcontrib><creatorcontrib>Klemt-Albert, Katharina</creatorcontrib><creatorcontrib>Reiterer, Alexander</creatorcontrib><creatorcontrib>Smarsly, Kay</creatorcontrib><title>Digital-Twin-Based Management of Sewer Systems: Research Strategy for the KaSyTwin Project</title><title>Water (Basel)</title><description>Sewer infrastructure is vital for flood prevention, environmental protection, and public health. As part of sewer infrastructure, sewer systems are prone to degradation. Traditional maintenance methods for sewer systems are largely manual and reactive and rely on inconsistent data, leading to inefficient maintenance. The KaSyTwin research project addresses the urgent need for efficient and resilient sewer system management methods in Germany, aiming to develop a methodology for the semi-automated development and utilization of digital twins of sewer systems to enhance data availability and operational resilience. Using advanced multi-sensor robotic platforms equipped with scanning and imaging systems, i.e., laser scanners and cameras, as well as artificial intelligence (AI), the KaSyTwin research project focuses on generating digital twin-enabled representations of sewer systems in real time. As a project report, this work outlines the research framework and proposed methodologies in the KaSyTwin research project. Digital twins of sewer systems integrated with AI technologies are expected to facilitate proactive maintenance, resilience forecasting against extreme weather events, and real-time damage detection. Furthermore, the KaSyTwin research project aspires to advance the digital management of sewer systems, ensuring long-term functionality and public welfare via on-demand structural health monitoring and non-destructive testing.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Automation</subject><subject>Building information modeling</subject><subject>Data analysis</subject><subject>Data processing</subject><subject>Digital twins</subject><subject>Infrastructure</subject><subject>Lasers</subject><subject>Robotics</subject><subject>Sensors</subject><subject>Sewer systems</subject><subject>Water treatment</subject><issn>2073-4441</issn><issn>2073-4441</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNkD9PwzAUxC0EElXpwDewxMQQsGMnsdmg_BVFIJKJJXLs5zZRmxTbVZRvT6oixA3vbjj9nnQInVNyxZgk1z3NCCOxlEdoEpOMRZxzevwvn6KZ9w0ZxaUQCZmgr_t6WQe1joq-bqM75cHgN9WqJWygDbizOIceHM4HH2Djb_AneFBOr3AenAqwHLDtHA4rwK8qH_YU_OG6BnQ4QydWrT3Mfn2KiseHYv4cLd6fXua3i0incRJxE9M0oVJIYZhKiYAqq3hmqLYCjOLcEM0rDSQBmoyXksyyiovUMm6YjtkUXRywW9d978CHsul2rh0_lmwkS8olS8bW5aGlXee9A1tuXb1RbigpKffjlX_jsR8TI2AV</recordid><startdate>20250122</startdate><enddate>20250122</enddate><creator>Hartmann, Sabine</creator><creator>Valles, Raquel</creator><creator>Schmitt, Annette</creator><creator>Al-Zuriqat, Thamer</creator><creator>Dragos, Kosmas</creator><creator>Gölzhäuser, Peter</creator><creator>Jung, Jan Thomas</creator><creator>Villinger, Georg</creator><creator>Varela Rojas, Diana</creator><creator>Bergmann, Matthias</creator><creator>Pullmann, Torben</creator><creator>Heimer, Dirk</creator><creator>Stahl, Christoph</creator><creator>Stollewerk, Axel</creator><creator>Hilgers, Michael</creator><creator>Jansen, Eva</creator><creator>Schoenebeck, Brigitte</creator><creator>Buchholz, Oliver</creator><creator>Papadakis, Ioannis</creator><creator>Merkle, Dominik Robert</creator><creator>Jäkel, Jan-Iwo</creator><creator>Mackenbach, Sven</creator><creator>Klemt-Albert, Katharina</creator><creator>Reiterer, Alexander</creator><creator>Smarsly, Kay</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-2736-3648</orcidid><orcidid>https://orcid.org/0000-0002-3482-2251</orcidid><orcidid>https://orcid.org/0009-0002-3036-8386</orcidid><orcidid>https://orcid.org/0000-0002-0788-1387</orcidid><orcidid>https://orcid.org/0000-0002-3196-3876</orcidid><orcidid>https://orcid.org/0000-0001-7228-3503</orcidid><orcidid>https://orcid.org/0009-0001-5400-2816</orcidid></search><sort><creationdate>20250122</creationdate><title>Digital-Twin-Based Management of Sewer Systems: Research Strategy for the KaSyTwin Project</title><author>Hartmann, Sabine ; Valles, Raquel ; Schmitt, Annette ; Al-Zuriqat, Thamer ; Dragos, Kosmas ; Gölzhäuser, Peter ; Jung, Jan Thomas ; Villinger, Georg ; Varela Rojas, Diana ; Bergmann, Matthias ; Pullmann, Torben ; Heimer, Dirk ; Stahl, Christoph ; Stollewerk, Axel ; Hilgers, Michael ; Jansen, Eva ; Schoenebeck, Brigitte ; Buchholz, Oliver ; Papadakis, Ioannis ; Merkle, Dominik Robert ; Jäkel, Jan-Iwo ; Mackenbach, Sven ; Klemt-Albert, Katharina ; Reiterer, Alexander ; Smarsly, Kay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c625-4d216519898d3a608eb7b47d1cf8eda44d0c4bce05e15e05107f3b486f34d3c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Automation</topic><topic>Building information modeling</topic><topic>Data analysis</topic><topic>Data processing</topic><topic>Digital twins</topic><topic>Infrastructure</topic><topic>Lasers</topic><topic>Robotics</topic><topic>Sensors</topic><topic>Sewer systems</topic><topic>Water treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hartmann, Sabine</creatorcontrib><creatorcontrib>Valles, Raquel</creatorcontrib><creatorcontrib>Schmitt, Annette</creatorcontrib><creatorcontrib>Al-Zuriqat, Thamer</creatorcontrib><creatorcontrib>Dragos, Kosmas</creatorcontrib><creatorcontrib>Gölzhäuser, Peter</creatorcontrib><creatorcontrib>Jung, Jan Thomas</creatorcontrib><creatorcontrib>Villinger, Georg</creatorcontrib><creatorcontrib>Varela Rojas, Diana</creatorcontrib><creatorcontrib>Bergmann, Matthias</creatorcontrib><creatorcontrib>Pullmann, Torben</creatorcontrib><creatorcontrib>Heimer, Dirk</creatorcontrib><creatorcontrib>Stahl, Christoph</creatorcontrib><creatorcontrib>Stollewerk, Axel</creatorcontrib><creatorcontrib>Hilgers, Michael</creatorcontrib><creatorcontrib>Jansen, Eva</creatorcontrib><creatorcontrib>Schoenebeck, Brigitte</creatorcontrib><creatorcontrib>Buchholz, Oliver</creatorcontrib><creatorcontrib>Papadakis, Ioannis</creatorcontrib><creatorcontrib>Merkle, Dominik Robert</creatorcontrib><creatorcontrib>Jäkel, Jan-Iwo</creatorcontrib><creatorcontrib>Mackenbach, Sven</creatorcontrib><creatorcontrib>Klemt-Albert, Katharina</creatorcontrib><creatorcontrib>Reiterer, Alexander</creatorcontrib><creatorcontrib>Smarsly, Kay</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Water (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hartmann, Sabine</au><au>Valles, Raquel</au><au>Schmitt, Annette</au><au>Al-Zuriqat, Thamer</au><au>Dragos, Kosmas</au><au>Gölzhäuser, Peter</au><au>Jung, Jan Thomas</au><au>Villinger, Georg</au><au>Varela Rojas, Diana</au><au>Bergmann, Matthias</au><au>Pullmann, Torben</au><au>Heimer, Dirk</au><au>Stahl, Christoph</au><au>Stollewerk, Axel</au><au>Hilgers, Michael</au><au>Jansen, Eva</au><au>Schoenebeck, Brigitte</au><au>Buchholz, Oliver</au><au>Papadakis, Ioannis</au><au>Merkle, Dominik Robert</au><au>Jäkel, Jan-Iwo</au><au>Mackenbach, Sven</au><au>Klemt-Albert, Katharina</au><au>Reiterer, Alexander</au><au>Smarsly, Kay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Digital-Twin-Based Management of Sewer Systems: Research Strategy for the KaSyTwin Project</atitle><jtitle>Water (Basel)</jtitle><date>2025-01-22</date><risdate>2025</risdate><volume>17</volume><issue>3</issue><spage>299</spage><pages>299-</pages><issn>2073-4441</issn><eissn>2073-4441</eissn><abstract>Sewer infrastructure is vital for flood prevention, environmental protection, and public health. As part of sewer infrastructure, sewer systems are prone to degradation. Traditional maintenance methods for sewer systems are largely manual and reactive and rely on inconsistent data, leading to inefficient maintenance. The KaSyTwin research project addresses the urgent need for efficient and resilient sewer system management methods in Germany, aiming to develop a methodology for the semi-automated development and utilization of digital twins of sewer systems to enhance data availability and operational resilience. Using advanced multi-sensor robotic platforms equipped with scanning and imaging systems, i.e., laser scanners and cameras, as well as artificial intelligence (AI), the KaSyTwin research project focuses on generating digital twin-enabled representations of sewer systems in real time. As a project report, this work outlines the research framework and proposed methodologies in the KaSyTwin research project. Digital twins of sewer systems integrated with AI technologies are expected to facilitate proactive maintenance, resilience forecasting against extreme weather events, and real-time damage detection. Furthermore, the KaSyTwin research project aspires to advance the digital management of sewer systems, ensuring long-term functionality and public welfare via on-demand structural health monitoring and non-destructive testing.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/w17030299</doi><orcidid>https://orcid.org/0000-0003-2736-3648</orcidid><orcidid>https://orcid.org/0000-0002-3482-2251</orcidid><orcidid>https://orcid.org/0009-0002-3036-8386</orcidid><orcidid>https://orcid.org/0000-0002-0788-1387</orcidid><orcidid>https://orcid.org/0000-0002-3196-3876</orcidid><orcidid>https://orcid.org/0000-0001-7228-3503</orcidid><orcidid>https://orcid.org/0009-0001-5400-2816</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4441 |
ispartof | Water (Basel), 2025-01, Vol.17 (3), p.299 |
issn | 2073-4441 2073-4441 |
language | eng |
recordid | cdi_crossref_primary_10_3390_w17030299 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms Artificial intelligence Automation Building information modeling Data analysis Data processing Digital twins Infrastructure Lasers Robotics Sensors Sewer systems Water treatment |
title | Digital-Twin-Based Management of Sewer Systems: Research Strategy for the KaSyTwin Project |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T11%3A18%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Digital-Twin-Based%20Management%20of%20Sewer%20Systems:%20Research%20Strategy%20for%20the%20KaSyTwin%20Project&rft.jtitle=Water%20(Basel)&rft.au=Hartmann,%20Sabine&rft.date=2025-01-22&rft.volume=17&rft.issue=3&rft.spage=299&rft.pages=299-&rft.issn=2073-4441&rft.eissn=2073-4441&rft_id=info:doi/10.3390/w17030299&rft_dat=%3Cproquest_cross%3E3165914935%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3165914935&rft_id=info:pmid/&rfr_iscdi=true |