Digital-Twin-Based Management of Sewer Systems: Research Strategy for the KaSyTwin Project

Sewer infrastructure is vital for flood prevention, environmental protection, and public health. As part of sewer infrastructure, sewer systems are prone to degradation. Traditional maintenance methods for sewer systems are largely manual and reactive and rely on inconsistent data, leading to ineffi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water (Basel) 2025-01, Vol.17 (3), p.299
Hauptverfasser: Hartmann, Sabine, Valles, Raquel, Schmitt, Annette, Al-Zuriqat, Thamer, Dragos, Kosmas, Gölzhäuser, Peter, Jung, Jan Thomas, Villinger, Georg, Varela Rojas, Diana, Bergmann, Matthias, Pullmann, Torben, Heimer, Dirk, Stahl, Christoph, Stollewerk, Axel, Hilgers, Michael, Jansen, Eva, Schoenebeck, Brigitte, Buchholz, Oliver, Papadakis, Ioannis, Merkle, Dominik Robert, Jäkel, Jan-Iwo, Mackenbach, Sven, Klemt-Albert, Katharina, Reiterer, Alexander, Smarsly, Kay
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 299
container_title Water (Basel)
container_volume 17
creator Hartmann, Sabine
Valles, Raquel
Schmitt, Annette
Al-Zuriqat, Thamer
Dragos, Kosmas
Gölzhäuser, Peter
Jung, Jan Thomas
Villinger, Georg
Varela Rojas, Diana
Bergmann, Matthias
Pullmann, Torben
Heimer, Dirk
Stahl, Christoph
Stollewerk, Axel
Hilgers, Michael
Jansen, Eva
Schoenebeck, Brigitte
Buchholz, Oliver
Papadakis, Ioannis
Merkle, Dominik Robert
Jäkel, Jan-Iwo
Mackenbach, Sven
Klemt-Albert, Katharina
Reiterer, Alexander
Smarsly, Kay
description Sewer infrastructure is vital for flood prevention, environmental protection, and public health. As part of sewer infrastructure, sewer systems are prone to degradation. Traditional maintenance methods for sewer systems are largely manual and reactive and rely on inconsistent data, leading to inefficient maintenance. The KaSyTwin research project addresses the urgent need for efficient and resilient sewer system management methods in Germany, aiming to develop a methodology for the semi-automated development and utilization of digital twins of sewer systems to enhance data availability and operational resilience. Using advanced multi-sensor robotic platforms equipped with scanning and imaging systems, i.e., laser scanners and cameras, as well as artificial intelligence (AI), the KaSyTwin research project focuses on generating digital twin-enabled representations of sewer systems in real time. As a project report, this work outlines the research framework and proposed methodologies in the KaSyTwin research project. Digital twins of sewer systems integrated with AI technologies are expected to facilitate proactive maintenance, resilience forecasting against extreme weather events, and real-time damage detection. Furthermore, the KaSyTwin research project aspires to advance the digital management of sewer systems, ensuring long-term functionality and public welfare via on-demand structural health monitoring and non-destructive testing.
doi_str_mv 10.3390/w17030299
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_3390_w17030299</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3165914935</sourcerecordid><originalsourceid>FETCH-LOGICAL-c625-4d216519898d3a608eb7b47d1cf8eda44d0c4bce05e15e05107f3b486f34d3c23</originalsourceid><addsrcrecordid>eNpNkD9PwzAUxC0EElXpwDewxMQQsGMnsdmg_BVFIJKJJXLs5zZRmxTbVZRvT6oixA3vbjj9nnQInVNyxZgk1z3NCCOxlEdoEpOMRZxzevwvn6KZ9w0ZxaUQCZmgr_t6WQe1joq-bqM75cHgN9WqJWygDbizOIceHM4HH2Djb_AneFBOr3AenAqwHLDtHA4rwK8qH_YU_OG6BnQ4QydWrT3Mfn2KiseHYv4cLd6fXua3i0incRJxE9M0oVJIYZhKiYAqq3hmqLYCjOLcEM0rDSQBmoyXksyyiovUMm6YjtkUXRywW9d978CHsul2rh0_lmwkS8olS8bW5aGlXee9A1tuXb1RbigpKffjlX_jsR8TI2AV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3165914935</pqid></control><display><type>article</type><title>Digital-Twin-Based Management of Sewer Systems: Research Strategy for the KaSyTwin Project</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Hartmann, Sabine ; Valles, Raquel ; Schmitt, Annette ; Al-Zuriqat, Thamer ; Dragos, Kosmas ; Gölzhäuser, Peter ; Jung, Jan Thomas ; Villinger, Georg ; Varela Rojas, Diana ; Bergmann, Matthias ; Pullmann, Torben ; Heimer, Dirk ; Stahl, Christoph ; Stollewerk, Axel ; Hilgers, Michael ; Jansen, Eva ; Schoenebeck, Brigitte ; Buchholz, Oliver ; Papadakis, Ioannis ; Merkle, Dominik Robert ; Jäkel, Jan-Iwo ; Mackenbach, Sven ; Klemt-Albert, Katharina ; Reiterer, Alexander ; Smarsly, Kay</creator><creatorcontrib>Hartmann, Sabine ; Valles, Raquel ; Schmitt, Annette ; Al-Zuriqat, Thamer ; Dragos, Kosmas ; Gölzhäuser, Peter ; Jung, Jan Thomas ; Villinger, Georg ; Varela Rojas, Diana ; Bergmann, Matthias ; Pullmann, Torben ; Heimer, Dirk ; Stahl, Christoph ; Stollewerk, Axel ; Hilgers, Michael ; Jansen, Eva ; Schoenebeck, Brigitte ; Buchholz, Oliver ; Papadakis, Ioannis ; Merkle, Dominik Robert ; Jäkel, Jan-Iwo ; Mackenbach, Sven ; Klemt-Albert, Katharina ; Reiterer, Alexander ; Smarsly, Kay</creatorcontrib><description>Sewer infrastructure is vital for flood prevention, environmental protection, and public health. As part of sewer infrastructure, sewer systems are prone to degradation. Traditional maintenance methods for sewer systems are largely manual and reactive and rely on inconsistent data, leading to inefficient maintenance. The KaSyTwin research project addresses the urgent need for efficient and resilient sewer system management methods in Germany, aiming to develop a methodology for the semi-automated development and utilization of digital twins of sewer systems to enhance data availability and operational resilience. Using advanced multi-sensor robotic platforms equipped with scanning and imaging systems, i.e., laser scanners and cameras, as well as artificial intelligence (AI), the KaSyTwin research project focuses on generating digital twin-enabled representations of sewer systems in real time. As a project report, this work outlines the research framework and proposed methodologies in the KaSyTwin research project. Digital twins of sewer systems integrated with AI technologies are expected to facilitate proactive maintenance, resilience forecasting against extreme weather events, and real-time damage detection. Furthermore, the KaSyTwin research project aspires to advance the digital management of sewer systems, ensuring long-term functionality and public welfare via on-demand structural health monitoring and non-destructive testing.</description><identifier>ISSN: 2073-4441</identifier><identifier>EISSN: 2073-4441</identifier><identifier>DOI: 10.3390/w17030299</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Artificial intelligence ; Automation ; Building information modeling ; Data analysis ; Data processing ; Digital twins ; Infrastructure ; Lasers ; Robotics ; Sensors ; Sewer systems ; Water treatment</subject><ispartof>Water (Basel), 2025-01, Vol.17 (3), p.299</ispartof><rights>2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c625-4d216519898d3a608eb7b47d1cf8eda44d0c4bce05e15e05107f3b486f34d3c23</cites><orcidid>0000-0003-2736-3648 ; 0000-0002-3482-2251 ; 0009-0002-3036-8386 ; 0000-0002-0788-1387 ; 0000-0002-3196-3876 ; 0000-0001-7228-3503 ; 0009-0001-5400-2816</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Hartmann, Sabine</creatorcontrib><creatorcontrib>Valles, Raquel</creatorcontrib><creatorcontrib>Schmitt, Annette</creatorcontrib><creatorcontrib>Al-Zuriqat, Thamer</creatorcontrib><creatorcontrib>Dragos, Kosmas</creatorcontrib><creatorcontrib>Gölzhäuser, Peter</creatorcontrib><creatorcontrib>Jung, Jan Thomas</creatorcontrib><creatorcontrib>Villinger, Georg</creatorcontrib><creatorcontrib>Varela Rojas, Diana</creatorcontrib><creatorcontrib>Bergmann, Matthias</creatorcontrib><creatorcontrib>Pullmann, Torben</creatorcontrib><creatorcontrib>Heimer, Dirk</creatorcontrib><creatorcontrib>Stahl, Christoph</creatorcontrib><creatorcontrib>Stollewerk, Axel</creatorcontrib><creatorcontrib>Hilgers, Michael</creatorcontrib><creatorcontrib>Jansen, Eva</creatorcontrib><creatorcontrib>Schoenebeck, Brigitte</creatorcontrib><creatorcontrib>Buchholz, Oliver</creatorcontrib><creatorcontrib>Papadakis, Ioannis</creatorcontrib><creatorcontrib>Merkle, Dominik Robert</creatorcontrib><creatorcontrib>Jäkel, Jan-Iwo</creatorcontrib><creatorcontrib>Mackenbach, Sven</creatorcontrib><creatorcontrib>Klemt-Albert, Katharina</creatorcontrib><creatorcontrib>Reiterer, Alexander</creatorcontrib><creatorcontrib>Smarsly, Kay</creatorcontrib><title>Digital-Twin-Based Management of Sewer Systems: Research Strategy for the KaSyTwin Project</title><title>Water (Basel)</title><description>Sewer infrastructure is vital for flood prevention, environmental protection, and public health. As part of sewer infrastructure, sewer systems are prone to degradation. Traditional maintenance methods for sewer systems are largely manual and reactive and rely on inconsistent data, leading to inefficient maintenance. The KaSyTwin research project addresses the urgent need for efficient and resilient sewer system management methods in Germany, aiming to develop a methodology for the semi-automated development and utilization of digital twins of sewer systems to enhance data availability and operational resilience. Using advanced multi-sensor robotic platforms equipped with scanning and imaging systems, i.e., laser scanners and cameras, as well as artificial intelligence (AI), the KaSyTwin research project focuses on generating digital twin-enabled representations of sewer systems in real time. As a project report, this work outlines the research framework and proposed methodologies in the KaSyTwin research project. Digital twins of sewer systems integrated with AI technologies are expected to facilitate proactive maintenance, resilience forecasting against extreme weather events, and real-time damage detection. Furthermore, the KaSyTwin research project aspires to advance the digital management of sewer systems, ensuring long-term functionality and public welfare via on-demand structural health monitoring and non-destructive testing.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Automation</subject><subject>Building information modeling</subject><subject>Data analysis</subject><subject>Data processing</subject><subject>Digital twins</subject><subject>Infrastructure</subject><subject>Lasers</subject><subject>Robotics</subject><subject>Sensors</subject><subject>Sewer systems</subject><subject>Water treatment</subject><issn>2073-4441</issn><issn>2073-4441</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNkD9PwzAUxC0EElXpwDewxMQQsGMnsdmg_BVFIJKJJXLs5zZRmxTbVZRvT6oixA3vbjj9nnQInVNyxZgk1z3NCCOxlEdoEpOMRZxzevwvn6KZ9w0ZxaUQCZmgr_t6WQe1joq-bqM75cHgN9WqJWygDbizOIceHM4HH2Djb_AneFBOr3AenAqwHLDtHA4rwK8qH_YU_OG6BnQ4QydWrT3Mfn2KiseHYv4cLd6fXua3i0incRJxE9M0oVJIYZhKiYAqq3hmqLYCjOLcEM0rDSQBmoyXksyyiovUMm6YjtkUXRywW9d978CHsul2rh0_lmwkS8olS8bW5aGlXee9A1tuXb1RbigpKffjlX_jsR8TI2AV</recordid><startdate>20250122</startdate><enddate>20250122</enddate><creator>Hartmann, Sabine</creator><creator>Valles, Raquel</creator><creator>Schmitt, Annette</creator><creator>Al-Zuriqat, Thamer</creator><creator>Dragos, Kosmas</creator><creator>Gölzhäuser, Peter</creator><creator>Jung, Jan Thomas</creator><creator>Villinger, Georg</creator><creator>Varela Rojas, Diana</creator><creator>Bergmann, Matthias</creator><creator>Pullmann, Torben</creator><creator>Heimer, Dirk</creator><creator>Stahl, Christoph</creator><creator>Stollewerk, Axel</creator><creator>Hilgers, Michael</creator><creator>Jansen, Eva</creator><creator>Schoenebeck, Brigitte</creator><creator>Buchholz, Oliver</creator><creator>Papadakis, Ioannis</creator><creator>Merkle, Dominik Robert</creator><creator>Jäkel, Jan-Iwo</creator><creator>Mackenbach, Sven</creator><creator>Klemt-Albert, Katharina</creator><creator>Reiterer, Alexander</creator><creator>Smarsly, Kay</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-2736-3648</orcidid><orcidid>https://orcid.org/0000-0002-3482-2251</orcidid><orcidid>https://orcid.org/0009-0002-3036-8386</orcidid><orcidid>https://orcid.org/0000-0002-0788-1387</orcidid><orcidid>https://orcid.org/0000-0002-3196-3876</orcidid><orcidid>https://orcid.org/0000-0001-7228-3503</orcidid><orcidid>https://orcid.org/0009-0001-5400-2816</orcidid></search><sort><creationdate>20250122</creationdate><title>Digital-Twin-Based Management of Sewer Systems: Research Strategy for the KaSyTwin Project</title><author>Hartmann, Sabine ; Valles, Raquel ; Schmitt, Annette ; Al-Zuriqat, Thamer ; Dragos, Kosmas ; Gölzhäuser, Peter ; Jung, Jan Thomas ; Villinger, Georg ; Varela Rojas, Diana ; Bergmann, Matthias ; Pullmann, Torben ; Heimer, Dirk ; Stahl, Christoph ; Stollewerk, Axel ; Hilgers, Michael ; Jansen, Eva ; Schoenebeck, Brigitte ; Buchholz, Oliver ; Papadakis, Ioannis ; Merkle, Dominik Robert ; Jäkel, Jan-Iwo ; Mackenbach, Sven ; Klemt-Albert, Katharina ; Reiterer, Alexander ; Smarsly, Kay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c625-4d216519898d3a608eb7b47d1cf8eda44d0c4bce05e15e05107f3b486f34d3c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Automation</topic><topic>Building information modeling</topic><topic>Data analysis</topic><topic>Data processing</topic><topic>Digital twins</topic><topic>Infrastructure</topic><topic>Lasers</topic><topic>Robotics</topic><topic>Sensors</topic><topic>Sewer systems</topic><topic>Water treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hartmann, Sabine</creatorcontrib><creatorcontrib>Valles, Raquel</creatorcontrib><creatorcontrib>Schmitt, Annette</creatorcontrib><creatorcontrib>Al-Zuriqat, Thamer</creatorcontrib><creatorcontrib>Dragos, Kosmas</creatorcontrib><creatorcontrib>Gölzhäuser, Peter</creatorcontrib><creatorcontrib>Jung, Jan Thomas</creatorcontrib><creatorcontrib>Villinger, Georg</creatorcontrib><creatorcontrib>Varela Rojas, Diana</creatorcontrib><creatorcontrib>Bergmann, Matthias</creatorcontrib><creatorcontrib>Pullmann, Torben</creatorcontrib><creatorcontrib>Heimer, Dirk</creatorcontrib><creatorcontrib>Stahl, Christoph</creatorcontrib><creatorcontrib>Stollewerk, Axel</creatorcontrib><creatorcontrib>Hilgers, Michael</creatorcontrib><creatorcontrib>Jansen, Eva</creatorcontrib><creatorcontrib>Schoenebeck, Brigitte</creatorcontrib><creatorcontrib>Buchholz, Oliver</creatorcontrib><creatorcontrib>Papadakis, Ioannis</creatorcontrib><creatorcontrib>Merkle, Dominik Robert</creatorcontrib><creatorcontrib>Jäkel, Jan-Iwo</creatorcontrib><creatorcontrib>Mackenbach, Sven</creatorcontrib><creatorcontrib>Klemt-Albert, Katharina</creatorcontrib><creatorcontrib>Reiterer, Alexander</creatorcontrib><creatorcontrib>Smarsly, Kay</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Water (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hartmann, Sabine</au><au>Valles, Raquel</au><au>Schmitt, Annette</au><au>Al-Zuriqat, Thamer</au><au>Dragos, Kosmas</au><au>Gölzhäuser, Peter</au><au>Jung, Jan Thomas</au><au>Villinger, Georg</au><au>Varela Rojas, Diana</au><au>Bergmann, Matthias</au><au>Pullmann, Torben</au><au>Heimer, Dirk</au><au>Stahl, Christoph</au><au>Stollewerk, Axel</au><au>Hilgers, Michael</au><au>Jansen, Eva</au><au>Schoenebeck, Brigitte</au><au>Buchholz, Oliver</au><au>Papadakis, Ioannis</au><au>Merkle, Dominik Robert</au><au>Jäkel, Jan-Iwo</au><au>Mackenbach, Sven</au><au>Klemt-Albert, Katharina</au><au>Reiterer, Alexander</au><au>Smarsly, Kay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Digital-Twin-Based Management of Sewer Systems: Research Strategy for the KaSyTwin Project</atitle><jtitle>Water (Basel)</jtitle><date>2025-01-22</date><risdate>2025</risdate><volume>17</volume><issue>3</issue><spage>299</spage><pages>299-</pages><issn>2073-4441</issn><eissn>2073-4441</eissn><abstract>Sewer infrastructure is vital for flood prevention, environmental protection, and public health. As part of sewer infrastructure, sewer systems are prone to degradation. Traditional maintenance methods for sewer systems are largely manual and reactive and rely on inconsistent data, leading to inefficient maintenance. The KaSyTwin research project addresses the urgent need for efficient and resilient sewer system management methods in Germany, aiming to develop a methodology for the semi-automated development and utilization of digital twins of sewer systems to enhance data availability and operational resilience. Using advanced multi-sensor robotic platforms equipped with scanning and imaging systems, i.e., laser scanners and cameras, as well as artificial intelligence (AI), the KaSyTwin research project focuses on generating digital twin-enabled representations of sewer systems in real time. As a project report, this work outlines the research framework and proposed methodologies in the KaSyTwin research project. Digital twins of sewer systems integrated with AI technologies are expected to facilitate proactive maintenance, resilience forecasting against extreme weather events, and real-time damage detection. Furthermore, the KaSyTwin research project aspires to advance the digital management of sewer systems, ensuring long-term functionality and public welfare via on-demand structural health monitoring and non-destructive testing.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/w17030299</doi><orcidid>https://orcid.org/0000-0003-2736-3648</orcidid><orcidid>https://orcid.org/0000-0002-3482-2251</orcidid><orcidid>https://orcid.org/0009-0002-3036-8386</orcidid><orcidid>https://orcid.org/0000-0002-0788-1387</orcidid><orcidid>https://orcid.org/0000-0002-3196-3876</orcidid><orcidid>https://orcid.org/0000-0001-7228-3503</orcidid><orcidid>https://orcid.org/0009-0001-5400-2816</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4441
ispartof Water (Basel), 2025-01, Vol.17 (3), p.299
issn 2073-4441
2073-4441
language eng
recordid cdi_crossref_primary_10_3390_w17030299
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Artificial intelligence
Automation
Building information modeling
Data analysis
Data processing
Digital twins
Infrastructure
Lasers
Robotics
Sensors
Sewer systems
Water treatment
title Digital-Twin-Based Management of Sewer Systems: Research Strategy for the KaSyTwin Project
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T11%3A18%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Digital-Twin-Based%20Management%20of%20Sewer%20Systems:%20Research%20Strategy%20for%20the%20KaSyTwin%20Project&rft.jtitle=Water%20(Basel)&rft.au=Hartmann,%20Sabine&rft.date=2025-01-22&rft.volume=17&rft.issue=3&rft.spage=299&rft.pages=299-&rft.issn=2073-4441&rft.eissn=2073-4441&rft_id=info:doi/10.3390/w17030299&rft_dat=%3Cproquest_cross%3E3165914935%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3165914935&rft_id=info:pmid/&rfr_iscdi=true