A Novel Training and Collaboration Integrated Framework for Human-Agent Teleoperation

Human operators have the trend of increasing physical and mental workloads when performing teleoperation tasks in uncertain and dynamic environments. In addition, their performances are influenced by subjective factors, potentially leading to operational errors or task failure. Although agent-based...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2021-12, Vol.21 (24), p.8341
Hauptverfasser: Huang, Zebin, Wang, Ziwei, Bai, Weibang, Huang, Yanpei, Sun, Lichao, Xiao, Bo, Yeatman, Eric M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 24
container_start_page 8341
container_title Sensors (Basel, Switzerland)
container_volume 21
creator Huang, Zebin
Wang, Ziwei
Bai, Weibang
Huang, Yanpei
Sun, Lichao
Xiao, Bo
Yeatman, Eric M
description Human operators have the trend of increasing physical and mental workloads when performing teleoperation tasks in uncertain and dynamic environments. In addition, their performances are influenced by subjective factors, potentially leading to operational errors or task failure. Although agent-based methods offer a promising solution to the above problems, the human experience and intelligence are necessary for teleoperation scenarios. In this paper, a truncated quantile critics reinforcement learning-based integrated framework is proposed for human-agent teleoperation that encompasses training, assessment and agent-based arbitration. The proposed framework allows for an expert training agent, a bilateral training and cooperation process to realize the co-optimization of agent and human. It can provide efficient and quantifiable training feedback. Experiments have been conducted to train subjects with the developed algorithm. The performances of human-human and human-agent cooperation modes are also compared. The results have shown that subjects can complete the tasks of reaching and picking and placing with the assistance of an agent in a shorter operational time, with a higher success rate and less workload than human-human cooperation.
doi_str_mv 10.3390/s21248341
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_crossref_primary_10_3390_s21248341</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3820acd15f004ea296cf53131a75f4cb</doaj_id><sourcerecordid>2615112957</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-fbdf64d4615731db71fbdfb3c1e464baa31f1acd36fedbb088bfdb6c734c101e3</originalsourceid><addsrcrecordid>eNpdkU9v1DAQxS0EomXhwBdAkbjAIWB7nMS5IK1WlK5UwWV7tvxnHLIk9uIkRXx7vGxZtUiWPBo__zRvHiGvGf0A0NKPE2dcSBDsCblkgotSck6fPqgvyItp2lPKAUA-Jxcg2poKqC7J7br4Gu9wKHZJ96EPXaGDKzZxGLSJSc99DMU2zNjlGl1xlfSIv2L6UfiYiutl1KFcdxjmYocDxgOevrwkz7weJnx1f6_I7dXn3ea6vPn2ZbtZ35RW1O1ceuN8LZyoWdUAc6Zhx44By1DUwmgNzDNtHdQenTFUSuOdqW0DwjLKEFZke-K6qPfqkPpRp98q6l79bcTUKZ3m3g6oQHKaUazylArUvK2tr4AB003lhTWZ9enEOixmRGezqaSHR9DHL6H_rrp4p2RD84EMeHcPSPHngtOsxn6ymDcZMC6T4tkmY7zNXlfk7X_SfVxSyKs6qrisatnKrHp_UtkUpymhPw_DqDoGr87BZ-2bh9Oflf-Shj-2FKlc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2612856898</pqid></control><display><type>article</type><title>A Novel Training and Collaboration Integrated Framework for Human-Agent Teleoperation</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Huang, Zebin ; Wang, Ziwei ; Bai, Weibang ; Huang, Yanpei ; Sun, Lichao ; Xiao, Bo ; Yeatman, Eric M</creator><creatorcontrib>Huang, Zebin ; Wang, Ziwei ; Bai, Weibang ; Huang, Yanpei ; Sun, Lichao ; Xiao, Bo ; Yeatman, Eric M</creatorcontrib><description>Human operators have the trend of increasing physical and mental workloads when performing teleoperation tasks in uncertain and dynamic environments. In addition, their performances are influenced by subjective factors, potentially leading to operational errors or task failure. Although agent-based methods offer a promising solution to the above problems, the human experience and intelligence are necessary for teleoperation scenarios. In this paper, a truncated quantile critics reinforcement learning-based integrated framework is proposed for human-agent teleoperation that encompasses training, assessment and agent-based arbitration. The proposed framework allows for an expert training agent, a bilateral training and cooperation process to realize the co-optimization of agent and human. It can provide efficient and quantifiable training feedback. Experiments have been conducted to train subjects with the developed algorithm. The performances of human-human and human-agent cooperation modes are also compared. The results have shown that subjects can complete the tasks of reaching and picking and placing with the assistance of an agent in a shorter operational time, with a higher success rate and less workload than human-human cooperation.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s21248341</identifier><identifier>PMID: 34960435</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Algorithms ; Arbitration ; Collaboration ; Communication channels ; Cooperation ; Fault diagnosis ; Feedback ; Humans ; human–agent interaction ; Learning ; reinforcement learning ; Robotics ; Robots ; teleoperation ; User-Computer Interface ; Velocity ; Workload</subject><ispartof>Sensors (Basel, Switzerland), 2021-12, Vol.21 (24), p.8341</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-fbdf64d4615731db71fbdfb3c1e464baa31f1acd36fedbb088bfdb6c734c101e3</citedby><cites>FETCH-LOGICAL-c469t-fbdf64d4615731db71fbdfb3c1e464baa31f1acd36fedbb088bfdb6c734c101e3</cites><orcidid>0000-0002-8937-8485 ; 0000-0003-4588-8501 ; 0000-0001-9361-4340</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8708703/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8708703/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34960435$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Zebin</creatorcontrib><creatorcontrib>Wang, Ziwei</creatorcontrib><creatorcontrib>Bai, Weibang</creatorcontrib><creatorcontrib>Huang, Yanpei</creatorcontrib><creatorcontrib>Sun, Lichao</creatorcontrib><creatorcontrib>Xiao, Bo</creatorcontrib><creatorcontrib>Yeatman, Eric M</creatorcontrib><title>A Novel Training and Collaboration Integrated Framework for Human-Agent Teleoperation</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>Human operators have the trend of increasing physical and mental workloads when performing teleoperation tasks in uncertain and dynamic environments. In addition, their performances are influenced by subjective factors, potentially leading to operational errors or task failure. Although agent-based methods offer a promising solution to the above problems, the human experience and intelligence are necessary for teleoperation scenarios. In this paper, a truncated quantile critics reinforcement learning-based integrated framework is proposed for human-agent teleoperation that encompasses training, assessment and agent-based arbitration. The proposed framework allows for an expert training agent, a bilateral training and cooperation process to realize the co-optimization of agent and human. It can provide efficient and quantifiable training feedback. Experiments have been conducted to train subjects with the developed algorithm. The performances of human-human and human-agent cooperation modes are also compared. The results have shown that subjects can complete the tasks of reaching and picking and placing with the assistance of an agent in a shorter operational time, with a higher success rate and less workload than human-human cooperation.</description><subject>Algorithms</subject><subject>Arbitration</subject><subject>Collaboration</subject><subject>Communication channels</subject><subject>Cooperation</subject><subject>Fault diagnosis</subject><subject>Feedback</subject><subject>Humans</subject><subject>human–agent interaction</subject><subject>Learning</subject><subject>reinforcement learning</subject><subject>Robotics</subject><subject>Robots</subject><subject>teleoperation</subject><subject>User-Computer Interface</subject><subject>Velocity</subject><subject>Workload</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNpdkU9v1DAQxS0EomXhwBdAkbjAIWB7nMS5IK1WlK5UwWV7tvxnHLIk9uIkRXx7vGxZtUiWPBo__zRvHiGvGf0A0NKPE2dcSBDsCblkgotSck6fPqgvyItp2lPKAUA-Jxcg2poKqC7J7br4Gu9wKHZJ96EPXaGDKzZxGLSJSc99DMU2zNjlGl1xlfSIv2L6UfiYiutl1KFcdxjmYocDxgOevrwkz7weJnx1f6_I7dXn3ea6vPn2ZbtZ35RW1O1ceuN8LZyoWdUAc6Zhx44By1DUwmgNzDNtHdQenTFUSuOdqW0DwjLKEFZke-K6qPfqkPpRp98q6l79bcTUKZ3m3g6oQHKaUazylArUvK2tr4AB003lhTWZ9enEOixmRGezqaSHR9DHL6H_rrp4p2RD84EMeHcPSPHngtOsxn6ymDcZMC6T4tkmY7zNXlfk7X_SfVxSyKs6qrisatnKrHp_UtkUpymhPw_DqDoGr87BZ-2bh9Oflf-Shj-2FKlc</recordid><startdate>20211214</startdate><enddate>20211214</enddate><creator>Huang, Zebin</creator><creator>Wang, Ziwei</creator><creator>Bai, Weibang</creator><creator>Huang, Yanpei</creator><creator>Sun, Lichao</creator><creator>Xiao, Bo</creator><creator>Yeatman, Eric M</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8937-8485</orcidid><orcidid>https://orcid.org/0000-0003-4588-8501</orcidid><orcidid>https://orcid.org/0000-0001-9361-4340</orcidid></search><sort><creationdate>20211214</creationdate><title>A Novel Training and Collaboration Integrated Framework for Human-Agent Teleoperation</title><author>Huang, Zebin ; Wang, Ziwei ; Bai, Weibang ; Huang, Yanpei ; Sun, Lichao ; Xiao, Bo ; Yeatman, Eric M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-fbdf64d4615731db71fbdfb3c1e464baa31f1acd36fedbb088bfdb6c734c101e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Arbitration</topic><topic>Collaboration</topic><topic>Communication channels</topic><topic>Cooperation</topic><topic>Fault diagnosis</topic><topic>Feedback</topic><topic>Humans</topic><topic>human–agent interaction</topic><topic>Learning</topic><topic>reinforcement learning</topic><topic>Robotics</topic><topic>Robots</topic><topic>teleoperation</topic><topic>User-Computer Interface</topic><topic>Velocity</topic><topic>Workload</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Zebin</creatorcontrib><creatorcontrib>Wang, Ziwei</creatorcontrib><creatorcontrib>Bai, Weibang</creatorcontrib><creatorcontrib>Huang, Yanpei</creatorcontrib><creatorcontrib>Sun, Lichao</creatorcontrib><creatorcontrib>Xiao, Bo</creatorcontrib><creatorcontrib>Yeatman, Eric M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Zebin</au><au>Wang, Ziwei</au><au>Bai, Weibang</au><au>Huang, Yanpei</au><au>Sun, Lichao</au><au>Xiao, Bo</au><au>Yeatman, Eric M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Training and Collaboration Integrated Framework for Human-Agent Teleoperation</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2021-12-14</date><risdate>2021</risdate><volume>21</volume><issue>24</issue><spage>8341</spage><pages>8341-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Human operators have the trend of increasing physical and mental workloads when performing teleoperation tasks in uncertain and dynamic environments. In addition, their performances are influenced by subjective factors, potentially leading to operational errors or task failure. Although agent-based methods offer a promising solution to the above problems, the human experience and intelligence are necessary for teleoperation scenarios. In this paper, a truncated quantile critics reinforcement learning-based integrated framework is proposed for human-agent teleoperation that encompasses training, assessment and agent-based arbitration. The proposed framework allows for an expert training agent, a bilateral training and cooperation process to realize the co-optimization of agent and human. It can provide efficient and quantifiable training feedback. Experiments have been conducted to train subjects with the developed algorithm. The performances of human-human and human-agent cooperation modes are also compared. The results have shown that subjects can complete the tasks of reaching and picking and placing with the assistance of an agent in a shorter operational time, with a higher success rate and less workload than human-human cooperation.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>34960435</pmid><doi>10.3390/s21248341</doi><orcidid>https://orcid.org/0000-0002-8937-8485</orcidid><orcidid>https://orcid.org/0000-0003-4588-8501</orcidid><orcidid>https://orcid.org/0000-0001-9361-4340</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2021-12, Vol.21 (24), p.8341
issn 1424-8220
1424-8220
language eng
recordid cdi_crossref_primary_10_3390_s21248341
source MDPI - Multidisciplinary Digital Publishing Institute; MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Algorithms
Arbitration
Collaboration
Communication channels
Cooperation
Fault diagnosis
Feedback
Humans
human–agent interaction
Learning
reinforcement learning
Robotics
Robots
teleoperation
User-Computer Interface
Velocity
Workload
title A Novel Training and Collaboration Integrated Framework for Human-Agent Teleoperation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T18%3A38%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Training%20and%20Collaboration%20Integrated%20Framework%20for%20Human-Agent%20Teleoperation&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Huang,%20Zebin&rft.date=2021-12-14&rft.volume=21&rft.issue=24&rft.spage=8341&rft.pages=8341-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s21248341&rft_dat=%3Cproquest_doaj_%3E2615112957%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2612856898&rft_id=info:pmid/34960435&rft_doaj_id=oai_doaj_org_article_3820acd15f004ea296cf53131a75f4cb&rfr_iscdi=true