A Novel Training and Collaboration Integrated Framework for Human-Agent Teleoperation
Human operators have the trend of increasing physical and mental workloads when performing teleoperation tasks in uncertain and dynamic environments. In addition, their performances are influenced by subjective factors, potentially leading to operational errors or task failure. Although agent-based...
Gespeichert in:
Veröffentlicht in: | Sensors (Basel, Switzerland) Switzerland), 2021-12, Vol.21 (24), p.8341 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 24 |
container_start_page | 8341 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 21 |
creator | Huang, Zebin Wang, Ziwei Bai, Weibang Huang, Yanpei Sun, Lichao Xiao, Bo Yeatman, Eric M |
description | Human operators have the trend of increasing physical and mental workloads when performing teleoperation tasks in uncertain and dynamic environments. In addition, their performances are influenced by subjective factors, potentially leading to operational errors or task failure. Although agent-based methods offer a promising solution to the above problems, the human experience and intelligence are necessary for teleoperation scenarios. In this paper, a truncated quantile critics reinforcement learning-based integrated framework is proposed for human-agent teleoperation that encompasses training, assessment and agent-based arbitration. The proposed framework allows for an expert training agent, a bilateral training and cooperation process to realize the co-optimization of agent and human. It can provide efficient and quantifiable training feedback. Experiments have been conducted to train subjects with the developed algorithm. The performances of human-human and human-agent cooperation modes are also compared. The results have shown that subjects can complete the tasks of reaching and picking and placing with the assistance of an agent in a shorter operational time, with a higher success rate and less workload than human-human cooperation. |
doi_str_mv | 10.3390/s21248341 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_crossref_primary_10_3390_s21248341</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3820acd15f004ea296cf53131a75f4cb</doaj_id><sourcerecordid>2615112957</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-fbdf64d4615731db71fbdfb3c1e464baa31f1acd36fedbb088bfdb6c734c101e3</originalsourceid><addsrcrecordid>eNpdkU9v1DAQxS0EomXhwBdAkbjAIWB7nMS5IK1WlK5UwWV7tvxnHLIk9uIkRXx7vGxZtUiWPBo__zRvHiGvGf0A0NKPE2dcSBDsCblkgotSck6fPqgvyItp2lPKAUA-Jxcg2poKqC7J7br4Gu9wKHZJ96EPXaGDKzZxGLSJSc99DMU2zNjlGl1xlfSIv2L6UfiYiutl1KFcdxjmYocDxgOevrwkz7weJnx1f6_I7dXn3ea6vPn2ZbtZ35RW1O1ceuN8LZyoWdUAc6Zhx44By1DUwmgNzDNtHdQenTFUSuOdqW0DwjLKEFZke-K6qPfqkPpRp98q6l79bcTUKZ3m3g6oQHKaUazylArUvK2tr4AB003lhTWZ9enEOixmRGezqaSHR9DHL6H_rrp4p2RD84EMeHcPSPHngtOsxn6ymDcZMC6T4tkmY7zNXlfk7X_SfVxSyKs6qrisatnKrHp_UtkUpymhPw_DqDoGr87BZ-2bh9Oflf-Shj-2FKlc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2612856898</pqid></control><display><type>article</type><title>A Novel Training and Collaboration Integrated Framework for Human-Agent Teleoperation</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Huang, Zebin ; Wang, Ziwei ; Bai, Weibang ; Huang, Yanpei ; Sun, Lichao ; Xiao, Bo ; Yeatman, Eric M</creator><creatorcontrib>Huang, Zebin ; Wang, Ziwei ; Bai, Weibang ; Huang, Yanpei ; Sun, Lichao ; Xiao, Bo ; Yeatman, Eric M</creatorcontrib><description>Human operators have the trend of increasing physical and mental workloads when performing teleoperation tasks in uncertain and dynamic environments. In addition, their performances are influenced by subjective factors, potentially leading to operational errors or task failure. Although agent-based methods offer a promising solution to the above problems, the human experience and intelligence are necessary for teleoperation scenarios. In this paper, a truncated quantile critics reinforcement learning-based integrated framework is proposed for human-agent teleoperation that encompasses training, assessment and agent-based arbitration. The proposed framework allows for an expert training agent, a bilateral training and cooperation process to realize the co-optimization of agent and human. It can provide efficient and quantifiable training feedback. Experiments have been conducted to train subjects with the developed algorithm. The performances of human-human and human-agent cooperation modes are also compared. The results have shown that subjects can complete the tasks of reaching and picking and placing with the assistance of an agent in a shorter operational time, with a higher success rate and less workload than human-human cooperation.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s21248341</identifier><identifier>PMID: 34960435</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Algorithms ; Arbitration ; Collaboration ; Communication channels ; Cooperation ; Fault diagnosis ; Feedback ; Humans ; human–agent interaction ; Learning ; reinforcement learning ; Robotics ; Robots ; teleoperation ; User-Computer Interface ; Velocity ; Workload</subject><ispartof>Sensors (Basel, Switzerland), 2021-12, Vol.21 (24), p.8341</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-fbdf64d4615731db71fbdfb3c1e464baa31f1acd36fedbb088bfdb6c734c101e3</citedby><cites>FETCH-LOGICAL-c469t-fbdf64d4615731db71fbdfb3c1e464baa31f1acd36fedbb088bfdb6c734c101e3</cites><orcidid>0000-0002-8937-8485 ; 0000-0003-4588-8501 ; 0000-0001-9361-4340</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8708703/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8708703/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34960435$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Zebin</creatorcontrib><creatorcontrib>Wang, Ziwei</creatorcontrib><creatorcontrib>Bai, Weibang</creatorcontrib><creatorcontrib>Huang, Yanpei</creatorcontrib><creatorcontrib>Sun, Lichao</creatorcontrib><creatorcontrib>Xiao, Bo</creatorcontrib><creatorcontrib>Yeatman, Eric M</creatorcontrib><title>A Novel Training and Collaboration Integrated Framework for Human-Agent Teleoperation</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>Human operators have the trend of increasing physical and mental workloads when performing teleoperation tasks in uncertain and dynamic environments. In addition, their performances are influenced by subjective factors, potentially leading to operational errors or task failure. Although agent-based methods offer a promising solution to the above problems, the human experience and intelligence are necessary for teleoperation scenarios. In this paper, a truncated quantile critics reinforcement learning-based integrated framework is proposed for human-agent teleoperation that encompasses training, assessment and agent-based arbitration. The proposed framework allows for an expert training agent, a bilateral training and cooperation process to realize the co-optimization of agent and human. It can provide efficient and quantifiable training feedback. Experiments have been conducted to train subjects with the developed algorithm. The performances of human-human and human-agent cooperation modes are also compared. The results have shown that subjects can complete the tasks of reaching and picking and placing with the assistance of an agent in a shorter operational time, with a higher success rate and less workload than human-human cooperation.</description><subject>Algorithms</subject><subject>Arbitration</subject><subject>Collaboration</subject><subject>Communication channels</subject><subject>Cooperation</subject><subject>Fault diagnosis</subject><subject>Feedback</subject><subject>Humans</subject><subject>human–agent interaction</subject><subject>Learning</subject><subject>reinforcement learning</subject><subject>Robotics</subject><subject>Robots</subject><subject>teleoperation</subject><subject>User-Computer Interface</subject><subject>Velocity</subject><subject>Workload</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNpdkU9v1DAQxS0EomXhwBdAkbjAIWB7nMS5IK1WlK5UwWV7tvxnHLIk9uIkRXx7vGxZtUiWPBo__zRvHiGvGf0A0NKPE2dcSBDsCblkgotSck6fPqgvyItp2lPKAUA-Jxcg2poKqC7J7br4Gu9wKHZJ96EPXaGDKzZxGLSJSc99DMU2zNjlGl1xlfSIv2L6UfiYiutl1KFcdxjmYocDxgOevrwkz7weJnx1f6_I7dXn3ea6vPn2ZbtZ35RW1O1ceuN8LZyoWdUAc6Zhx44By1DUwmgNzDNtHdQenTFUSuOdqW0DwjLKEFZke-K6qPfqkPpRp98q6l79bcTUKZ3m3g6oQHKaUazylArUvK2tr4AB003lhTWZ9enEOixmRGezqaSHR9DHL6H_rrp4p2RD84EMeHcPSPHngtOsxn6ymDcZMC6T4tkmY7zNXlfk7X_SfVxSyKs6qrisatnKrHp_UtkUpymhPw_DqDoGr87BZ-2bh9Oflf-Shj-2FKlc</recordid><startdate>20211214</startdate><enddate>20211214</enddate><creator>Huang, Zebin</creator><creator>Wang, Ziwei</creator><creator>Bai, Weibang</creator><creator>Huang, Yanpei</creator><creator>Sun, Lichao</creator><creator>Xiao, Bo</creator><creator>Yeatman, Eric M</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8937-8485</orcidid><orcidid>https://orcid.org/0000-0003-4588-8501</orcidid><orcidid>https://orcid.org/0000-0001-9361-4340</orcidid></search><sort><creationdate>20211214</creationdate><title>A Novel Training and Collaboration Integrated Framework for Human-Agent Teleoperation</title><author>Huang, Zebin ; Wang, Ziwei ; Bai, Weibang ; Huang, Yanpei ; Sun, Lichao ; Xiao, Bo ; Yeatman, Eric M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-fbdf64d4615731db71fbdfb3c1e464baa31f1acd36fedbb088bfdb6c734c101e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Arbitration</topic><topic>Collaboration</topic><topic>Communication channels</topic><topic>Cooperation</topic><topic>Fault diagnosis</topic><topic>Feedback</topic><topic>Humans</topic><topic>human–agent interaction</topic><topic>Learning</topic><topic>reinforcement learning</topic><topic>Robotics</topic><topic>Robots</topic><topic>teleoperation</topic><topic>User-Computer Interface</topic><topic>Velocity</topic><topic>Workload</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Zebin</creatorcontrib><creatorcontrib>Wang, Ziwei</creatorcontrib><creatorcontrib>Bai, Weibang</creatorcontrib><creatorcontrib>Huang, Yanpei</creatorcontrib><creatorcontrib>Sun, Lichao</creatorcontrib><creatorcontrib>Xiao, Bo</creatorcontrib><creatorcontrib>Yeatman, Eric M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Zebin</au><au>Wang, Ziwei</au><au>Bai, Weibang</au><au>Huang, Yanpei</au><au>Sun, Lichao</au><au>Xiao, Bo</au><au>Yeatman, Eric M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Training and Collaboration Integrated Framework for Human-Agent Teleoperation</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2021-12-14</date><risdate>2021</risdate><volume>21</volume><issue>24</issue><spage>8341</spage><pages>8341-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Human operators have the trend of increasing physical and mental workloads when performing teleoperation tasks in uncertain and dynamic environments. In addition, their performances are influenced by subjective factors, potentially leading to operational errors or task failure. Although agent-based methods offer a promising solution to the above problems, the human experience and intelligence are necessary for teleoperation scenarios. In this paper, a truncated quantile critics reinforcement learning-based integrated framework is proposed for human-agent teleoperation that encompasses training, assessment and agent-based arbitration. The proposed framework allows for an expert training agent, a bilateral training and cooperation process to realize the co-optimization of agent and human. It can provide efficient and quantifiable training feedback. Experiments have been conducted to train subjects with the developed algorithm. The performances of human-human and human-agent cooperation modes are also compared. The results have shown that subjects can complete the tasks of reaching and picking and placing with the assistance of an agent in a shorter operational time, with a higher success rate and less workload than human-human cooperation.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>34960435</pmid><doi>10.3390/s21248341</doi><orcidid>https://orcid.org/0000-0002-8937-8485</orcidid><orcidid>https://orcid.org/0000-0003-4588-8501</orcidid><orcidid>https://orcid.org/0000-0001-9361-4340</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2021-12, Vol.21 (24), p.8341 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_crossref_primary_10_3390_s21248341 |
source | MDPI - Multidisciplinary Digital Publishing Institute; MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Algorithms Arbitration Collaboration Communication channels Cooperation Fault diagnosis Feedback Humans human–agent interaction Learning reinforcement learning Robotics Robots teleoperation User-Computer Interface Velocity Workload |
title | A Novel Training and Collaboration Integrated Framework for Human-Agent Teleoperation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T18%3A38%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Training%20and%20Collaboration%20Integrated%20Framework%20for%20Human-Agent%20Teleoperation&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Huang,%20Zebin&rft.date=2021-12-14&rft.volume=21&rft.issue=24&rft.spage=8341&rft.pages=8341-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s21248341&rft_dat=%3Cproquest_doaj_%3E2615112957%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2612856898&rft_id=info:pmid/34960435&rft_doaj_id=oai_doaj_org_article_3820acd15f004ea296cf53131a75f4cb&rfr_iscdi=true |