Research on Finger Vein Image Segmentation and Blood Sampling Point Location in Automatic Blood Collection

In the fingertip blood automatic sampling process, when the blood sampling point in the fingertip venous area, it will greatly increase the amount of bleeding without being squeezed. In order to accurately locate the blood sampling point in the venous area, we propose a new finger vein image segment...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2020-12, Vol.21 (1), p.132, Article 132
Hauptverfasser: Li, Xi, Li, Zhangyong, Yang, Dewei, Zhong, Lisha, Huang, Lian, Lin, Jinzhao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 132
container_title Sensors (Basel, Switzerland)
container_volume 21
creator Li, Xi
Li, Zhangyong
Yang, Dewei
Zhong, Lisha
Huang, Lian
Lin, Jinzhao
description In the fingertip blood automatic sampling process, when the blood sampling point in the fingertip venous area, it will greatly increase the amount of bleeding without being squeezed. In order to accurately locate the blood sampling point in the venous area, we propose a new finger vein image segmentation approach basing on Gabor transform and Gaussian mixed model (GMM). Firstly, Gabor filter parameter can be set adaptively according to the differential excitation of image and we use the local binary pattern (LBP) to fuse the same-scale and multi-orientation Gabor features of the image. Then, finger vein image segmentation is achieved by Gabor-GMM system and optimized by the max flow min cut method which is based on the relative entropy of the foreground and the background. Finally, the blood sampling point can be localized with corner detection. The experimental results show that the proposed approach has significant performance in segmenting finger vein images which the average accuracy of segmentation images reach 91.6%.
doi_str_mv 10.3390/s21010132
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_3390_s21010132</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d9538dbaa8fd498885f7b71e10c1820a</doaj_id><sourcerecordid>2474496987</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-4281f35d23b0a86f1c4d59d47b4faa808f6e74dea75ce21c177f6272084d67d33</originalsourceid><addsrcrecordid>eNqNkluL1DAUgIso7kUf_ANS8MVFRnNrk74Ia3F1YEBx1deQJifdDG0yJq3ivzezHYddnyQPuZwvXw4npyieYfSa0ga9SQSjPCh5UJxiRthKEIIe3lmfFGcpbREilFLxuDjJE28IpqfF9gskUFHflMGXV873EMvv4Hy5HlUP5TX0I_hJTS6HlTfluyEEU16rcTdkuPwcnJ_KTdALke9dzlMY804f0DYMA-h99EnxyKohwdPDfF58u3r_tf242nz6sG4vNyvN6mZaMSKwpZUhtENK1BZrZqrGMN4xq5RAwtbAmQHFKw0Ea8y5rQknSDBTc0PpebFevCaordxFN6r4Wwbl5O1BiL1UMSc4gDRNRYXpstYa1gghKss7jgEjjQVBKrveLq7d3I1gdK5FVMM96f2IdzeyDz8l51ld8Sx4eRDE8GOGNMnRJQ3DoDyEOUnCOGNN3Yg9-uIfdBvm6HOpbqmKYMJwpi4WSseQUgR7TAYjue8GeeyGzD6_m_2R_Pv9GXi1AL-gCzZpB17DEUMI1SiXVrC8Qvunxf_TrVu6pg2zn-gf9i_PZg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2474521241</pqid></control><display><type>article</type><title>Research on Finger Vein Image Segmentation and Blood Sampling Point Location in Automatic Blood Collection</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Li, Xi ; Li, Zhangyong ; Yang, Dewei ; Zhong, Lisha ; Huang, Lian ; Lin, Jinzhao</creator><creatorcontrib>Li, Xi ; Li, Zhangyong ; Yang, Dewei ; Zhong, Lisha ; Huang, Lian ; Lin, Jinzhao</creatorcontrib><description>In the fingertip blood automatic sampling process, when the blood sampling point in the fingertip venous area, it will greatly increase the amount of bleeding without being squeezed. In order to accurately locate the blood sampling point in the venous area, we propose a new finger vein image segmentation approach basing on Gabor transform and Gaussian mixed model (GMM). Firstly, Gabor filter parameter can be set adaptively according to the differential excitation of image and we use the local binary pattern (LBP) to fuse the same-scale and multi-orientation Gabor features of the image. Then, finger vein image segmentation is achieved by Gabor-GMM system and optimized by the max flow min cut method which is based on the relative entropy of the foreground and the background. Finally, the blood sampling point can be localized with corner detection. The experimental results show that the proposed approach has significant performance in segmenting finger vein images which the average accuracy of segmentation images reach 91.6%.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s21010132</identifier><identifier>PMID: 33379213</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>Accuracy ; Algorithms ; Blood ; Chemistry ; Chemistry, Analytical ; Corner detection ; Datasets ; Deep learning ; Engineering ; Engineering, Electrical &amp; Electronic ; Entropy ; finger vein ; Fuzzy sets ; Gabor ; Gabor filters ; Gabor transformation ; Gaussian mixture model ; Hematologic Tests ; Image Processing, Computer-Assisted ; image segmentation ; Instruments &amp; Instrumentation ; Letter ; Methods ; Neural networks ; Normal Distribution ; Physical Sciences ; Sampling ; Science &amp; Technology ; Support vector machines ; Technology ; Veins ; Veins &amp; arteries ; Veins - diagnostic imaging</subject><ispartof>Sensors (Basel, Switzerland), 2020-12, Vol.21 (1), p.132, Article 132</ispartof><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>2</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000606278400001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c469t-4281f35d23b0a86f1c4d59d47b4faa808f6e74dea75ce21c177f6272084d67d33</citedby><cites>FETCH-LOGICAL-c469t-4281f35d23b0a86f1c4d59d47b4faa808f6e74dea75ce21c177f6272084d67d33</cites><orcidid>0000-0002-3914-4445 ; 0000-0003-4157-9066 ; 0000-0002-3918-069X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7795357/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7795357/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2104,2116,27931,27932,39265,53798,53800</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33379213$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Xi</creatorcontrib><creatorcontrib>Li, Zhangyong</creatorcontrib><creatorcontrib>Yang, Dewei</creatorcontrib><creatorcontrib>Zhong, Lisha</creatorcontrib><creatorcontrib>Huang, Lian</creatorcontrib><creatorcontrib>Lin, Jinzhao</creatorcontrib><title>Research on Finger Vein Image Segmentation and Blood Sampling Point Location in Automatic Blood Collection</title><title>Sensors (Basel, Switzerland)</title><addtitle>SENSORS-BASEL</addtitle><addtitle>Sensors (Basel)</addtitle><description>In the fingertip blood automatic sampling process, when the blood sampling point in the fingertip venous area, it will greatly increase the amount of bleeding without being squeezed. In order to accurately locate the blood sampling point in the venous area, we propose a new finger vein image segmentation approach basing on Gabor transform and Gaussian mixed model (GMM). Firstly, Gabor filter parameter can be set adaptively according to the differential excitation of image and we use the local binary pattern (LBP) to fuse the same-scale and multi-orientation Gabor features of the image. Then, finger vein image segmentation is achieved by Gabor-GMM system and optimized by the max flow min cut method which is based on the relative entropy of the foreground and the background. Finally, the blood sampling point can be localized with corner detection. The experimental results show that the proposed approach has significant performance in segmenting finger vein images which the average accuracy of segmentation images reach 91.6%.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Blood</subject><subject>Chemistry</subject><subject>Chemistry, Analytical</subject><subject>Corner detection</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Engineering</subject><subject>Engineering, Electrical &amp; Electronic</subject><subject>Entropy</subject><subject>finger vein</subject><subject>Fuzzy sets</subject><subject>Gabor</subject><subject>Gabor filters</subject><subject>Gabor transformation</subject><subject>Gaussian mixture model</subject><subject>Hematologic Tests</subject><subject>Image Processing, Computer-Assisted</subject><subject>image segmentation</subject><subject>Instruments &amp; Instrumentation</subject><subject>Letter</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Normal Distribution</subject><subject>Physical Sciences</subject><subject>Sampling</subject><subject>Science &amp; Technology</subject><subject>Support vector machines</subject><subject>Technology</subject><subject>Veins</subject><subject>Veins &amp; arteries</subject><subject>Veins - diagnostic imaging</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNqNkluL1DAUgIso7kUf_ANS8MVFRnNrk74Ia3F1YEBx1deQJifdDG0yJq3ivzezHYddnyQPuZwvXw4npyieYfSa0ga9SQSjPCh5UJxiRthKEIIe3lmfFGcpbREilFLxuDjJE28IpqfF9gskUFHflMGXV873EMvv4Hy5HlUP5TX0I_hJTS6HlTfluyEEU16rcTdkuPwcnJ_KTdALke9dzlMY804f0DYMA-h99EnxyKohwdPDfF58u3r_tf242nz6sG4vNyvN6mZaMSKwpZUhtENK1BZrZqrGMN4xq5RAwtbAmQHFKw0Ea8y5rQknSDBTc0PpebFevCaordxFN6r4Wwbl5O1BiL1UMSc4gDRNRYXpstYa1gghKss7jgEjjQVBKrveLq7d3I1gdK5FVMM96f2IdzeyDz8l51ld8Sx4eRDE8GOGNMnRJQ3DoDyEOUnCOGNN3Yg9-uIfdBvm6HOpbqmKYMJwpi4WSseQUgR7TAYjue8GeeyGzD6_m_2R_Pv9GXi1AL-gCzZpB17DEUMI1SiXVrC8Qvunxf_TrVu6pg2zn-gf9i_PZg</recordid><startdate>20201228</startdate><enddate>20201228</enddate><creator>Li, Xi</creator><creator>Li, Zhangyong</creator><creator>Yang, Dewei</creator><creator>Zhong, Lisha</creator><creator>Huang, Lian</creator><creator>Lin, Jinzhao</creator><general>Mdpi</general><general>MDPI AG</general><general>MDPI</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3914-4445</orcidid><orcidid>https://orcid.org/0000-0003-4157-9066</orcidid><orcidid>https://orcid.org/0000-0002-3918-069X</orcidid></search><sort><creationdate>20201228</creationdate><title>Research on Finger Vein Image Segmentation and Blood Sampling Point Location in Automatic Blood Collection</title><author>Li, Xi ; Li, Zhangyong ; Yang, Dewei ; Zhong, Lisha ; Huang, Lian ; Lin, Jinzhao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-4281f35d23b0a86f1c4d59d47b4faa808f6e74dea75ce21c177f6272084d67d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Blood</topic><topic>Chemistry</topic><topic>Chemistry, Analytical</topic><topic>Corner detection</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Engineering</topic><topic>Engineering, Electrical &amp; Electronic</topic><topic>Entropy</topic><topic>finger vein</topic><topic>Fuzzy sets</topic><topic>Gabor</topic><topic>Gabor filters</topic><topic>Gabor transformation</topic><topic>Gaussian mixture model</topic><topic>Hematologic Tests</topic><topic>Image Processing, Computer-Assisted</topic><topic>image segmentation</topic><topic>Instruments &amp; Instrumentation</topic><topic>Letter</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Normal Distribution</topic><topic>Physical Sciences</topic><topic>Sampling</topic><topic>Science &amp; Technology</topic><topic>Support vector machines</topic><topic>Technology</topic><topic>Veins</topic><topic>Veins &amp; arteries</topic><topic>Veins - diagnostic imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xi</creatorcontrib><creatorcontrib>Li, Zhangyong</creatorcontrib><creatorcontrib>Yang, Dewei</creatorcontrib><creatorcontrib>Zhong, Lisha</creatorcontrib><creatorcontrib>Huang, Lian</creatorcontrib><creatorcontrib>Lin, Jinzhao</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xi</au><au>Li, Zhangyong</au><au>Yang, Dewei</au><au>Zhong, Lisha</au><au>Huang, Lian</au><au>Lin, Jinzhao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on Finger Vein Image Segmentation and Blood Sampling Point Location in Automatic Blood Collection</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><stitle>SENSORS-BASEL</stitle><addtitle>Sensors (Basel)</addtitle><date>2020-12-28</date><risdate>2020</risdate><volume>21</volume><issue>1</issue><spage>132</spage><pages>132-</pages><artnum>132</artnum><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>In the fingertip blood automatic sampling process, when the blood sampling point in the fingertip venous area, it will greatly increase the amount of bleeding without being squeezed. In order to accurately locate the blood sampling point in the venous area, we propose a new finger vein image segmentation approach basing on Gabor transform and Gaussian mixed model (GMM). Firstly, Gabor filter parameter can be set adaptively according to the differential excitation of image and we use the local binary pattern (LBP) to fuse the same-scale and multi-orientation Gabor features of the image. Then, finger vein image segmentation is achieved by Gabor-GMM system and optimized by the max flow min cut method which is based on the relative entropy of the foreground and the background. Finally, the blood sampling point can be localized with corner detection. The experimental results show that the proposed approach has significant performance in segmenting finger vein images which the average accuracy of segmentation images reach 91.6%.</abstract><cop>BASEL</cop><pub>Mdpi</pub><pmid>33379213</pmid><doi>10.3390/s21010132</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3914-4445</orcidid><orcidid>https://orcid.org/0000-0003-4157-9066</orcidid><orcidid>https://orcid.org/0000-0002-3918-069X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2020-12, Vol.21 (1), p.132, Article 132
issn 1424-8220
1424-8220
language eng
recordid cdi_crossref_primary_10_3390_s21010132
source MEDLINE; DOAJ Directory of Open Access Journals; MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Accuracy
Algorithms
Blood
Chemistry
Chemistry, Analytical
Corner detection
Datasets
Deep learning
Engineering
Engineering, Electrical & Electronic
Entropy
finger vein
Fuzzy sets
Gabor
Gabor filters
Gabor transformation
Gaussian mixture model
Hematologic Tests
Image Processing, Computer-Assisted
image segmentation
Instruments & Instrumentation
Letter
Methods
Neural networks
Normal Distribution
Physical Sciences
Sampling
Science & Technology
Support vector machines
Technology
Veins
Veins & arteries
Veins - diagnostic imaging
title Research on Finger Vein Image Segmentation and Blood Sampling Point Location in Automatic Blood Collection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T20%3A49%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20Finger%20Vein%20Image%20Segmentation%20and%20Blood%20Sampling%20Point%20Location%20in%20Automatic%20Blood%20Collection&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Li,%20Xi&rft.date=2020-12-28&rft.volume=21&rft.issue=1&rft.spage=132&rft.pages=132-&rft.artnum=132&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s21010132&rft_dat=%3Cproquest_cross%3E2474496987%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2474521241&rft_id=info:pmid/33379213&rft_doaj_id=oai_doaj_org_article_d9538dbaa8fd498885f7b71e10c1820a&rfr_iscdi=true