Research on Finger Vein Image Segmentation and Blood Sampling Point Location in Automatic Blood Collection
In the fingertip blood automatic sampling process, when the blood sampling point in the fingertip venous area, it will greatly increase the amount of bleeding without being squeezed. In order to accurately locate the blood sampling point in the venous area, we propose a new finger vein image segment...
Gespeichert in:
Veröffentlicht in: | Sensors (Basel, Switzerland) Switzerland), 2020-12, Vol.21 (1), p.132, Article 132 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 132 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 21 |
creator | Li, Xi Li, Zhangyong Yang, Dewei Zhong, Lisha Huang, Lian Lin, Jinzhao |
description | In the fingertip blood automatic sampling process, when the blood sampling point in the fingertip venous area, it will greatly increase the amount of bleeding without being squeezed. In order to accurately locate the blood sampling point in the venous area, we propose a new finger vein image segmentation approach basing on Gabor transform and Gaussian mixed model (GMM). Firstly, Gabor filter parameter can be set adaptively according to the differential excitation of image and we use the local binary pattern (LBP) to fuse the same-scale and multi-orientation Gabor features of the image. Then, finger vein image segmentation is achieved by Gabor-GMM system and optimized by the max flow min cut method which is based on the relative entropy of the foreground and the background. Finally, the blood sampling point can be localized with corner detection. The experimental results show that the proposed approach has significant performance in segmenting finger vein images which the average accuracy of segmentation images reach 91.6%. |
doi_str_mv | 10.3390/s21010132 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_3390_s21010132</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d9538dbaa8fd498885f7b71e10c1820a</doaj_id><sourcerecordid>2474496987</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-4281f35d23b0a86f1c4d59d47b4faa808f6e74dea75ce21c177f6272084d67d33</originalsourceid><addsrcrecordid>eNqNkluL1DAUgIso7kUf_ANS8MVFRnNrk74Ia3F1YEBx1deQJifdDG0yJq3ivzezHYddnyQPuZwvXw4npyieYfSa0ga9SQSjPCh5UJxiRthKEIIe3lmfFGcpbREilFLxuDjJE28IpqfF9gskUFHflMGXV873EMvv4Hy5HlUP5TX0I_hJTS6HlTfluyEEU16rcTdkuPwcnJ_KTdALke9dzlMY804f0DYMA-h99EnxyKohwdPDfF58u3r_tf242nz6sG4vNyvN6mZaMSKwpZUhtENK1BZrZqrGMN4xq5RAwtbAmQHFKw0Ea8y5rQknSDBTc0PpebFevCaordxFN6r4Wwbl5O1BiL1UMSc4gDRNRYXpstYa1gghKss7jgEjjQVBKrveLq7d3I1gdK5FVMM96f2IdzeyDz8l51ld8Sx4eRDE8GOGNMnRJQ3DoDyEOUnCOGNN3Yg9-uIfdBvm6HOpbqmKYMJwpi4WSseQUgR7TAYjue8GeeyGzD6_m_2R_Pv9GXi1AL-gCzZpB17DEUMI1SiXVrC8Qvunxf_TrVu6pg2zn-gf9i_PZg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2474521241</pqid></control><display><type>article</type><title>Research on Finger Vein Image Segmentation and Blood Sampling Point Location in Automatic Blood Collection</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Li, Xi ; Li, Zhangyong ; Yang, Dewei ; Zhong, Lisha ; Huang, Lian ; Lin, Jinzhao</creator><creatorcontrib>Li, Xi ; Li, Zhangyong ; Yang, Dewei ; Zhong, Lisha ; Huang, Lian ; Lin, Jinzhao</creatorcontrib><description>In the fingertip blood automatic sampling process, when the blood sampling point in the fingertip venous area, it will greatly increase the amount of bleeding without being squeezed. In order to accurately locate the blood sampling point in the venous area, we propose a new finger vein image segmentation approach basing on Gabor transform and Gaussian mixed model (GMM). Firstly, Gabor filter parameter can be set adaptively according to the differential excitation of image and we use the local binary pattern (LBP) to fuse the same-scale and multi-orientation Gabor features of the image. Then, finger vein image segmentation is achieved by Gabor-GMM system and optimized by the max flow min cut method which is based on the relative entropy of the foreground and the background. Finally, the blood sampling point can be localized with corner detection. The experimental results show that the proposed approach has significant performance in segmenting finger vein images which the average accuracy of segmentation images reach 91.6%.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s21010132</identifier><identifier>PMID: 33379213</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>Accuracy ; Algorithms ; Blood ; Chemistry ; Chemistry, Analytical ; Corner detection ; Datasets ; Deep learning ; Engineering ; Engineering, Electrical & Electronic ; Entropy ; finger vein ; Fuzzy sets ; Gabor ; Gabor filters ; Gabor transformation ; Gaussian mixture model ; Hematologic Tests ; Image Processing, Computer-Assisted ; image segmentation ; Instruments & Instrumentation ; Letter ; Methods ; Neural networks ; Normal Distribution ; Physical Sciences ; Sampling ; Science & Technology ; Support vector machines ; Technology ; Veins ; Veins & arteries ; Veins - diagnostic imaging</subject><ispartof>Sensors (Basel, Switzerland), 2020-12, Vol.21 (1), p.132, Article 132</ispartof><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>2</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000606278400001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c469t-4281f35d23b0a86f1c4d59d47b4faa808f6e74dea75ce21c177f6272084d67d33</citedby><cites>FETCH-LOGICAL-c469t-4281f35d23b0a86f1c4d59d47b4faa808f6e74dea75ce21c177f6272084d67d33</cites><orcidid>0000-0002-3914-4445 ; 0000-0003-4157-9066 ; 0000-0002-3918-069X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7795357/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7795357/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2104,2116,27931,27932,39265,53798,53800</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33379213$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Xi</creatorcontrib><creatorcontrib>Li, Zhangyong</creatorcontrib><creatorcontrib>Yang, Dewei</creatorcontrib><creatorcontrib>Zhong, Lisha</creatorcontrib><creatorcontrib>Huang, Lian</creatorcontrib><creatorcontrib>Lin, Jinzhao</creatorcontrib><title>Research on Finger Vein Image Segmentation and Blood Sampling Point Location in Automatic Blood Collection</title><title>Sensors (Basel, Switzerland)</title><addtitle>SENSORS-BASEL</addtitle><addtitle>Sensors (Basel)</addtitle><description>In the fingertip blood automatic sampling process, when the blood sampling point in the fingertip venous area, it will greatly increase the amount of bleeding without being squeezed. In order to accurately locate the blood sampling point in the venous area, we propose a new finger vein image segmentation approach basing on Gabor transform and Gaussian mixed model (GMM). Firstly, Gabor filter parameter can be set adaptively according to the differential excitation of image and we use the local binary pattern (LBP) to fuse the same-scale and multi-orientation Gabor features of the image. Then, finger vein image segmentation is achieved by Gabor-GMM system and optimized by the max flow min cut method which is based on the relative entropy of the foreground and the background. Finally, the blood sampling point can be localized with corner detection. The experimental results show that the proposed approach has significant performance in segmenting finger vein images which the average accuracy of segmentation images reach 91.6%.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Blood</subject><subject>Chemistry</subject><subject>Chemistry, Analytical</subject><subject>Corner detection</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Engineering</subject><subject>Engineering, Electrical & Electronic</subject><subject>Entropy</subject><subject>finger vein</subject><subject>Fuzzy sets</subject><subject>Gabor</subject><subject>Gabor filters</subject><subject>Gabor transformation</subject><subject>Gaussian mixture model</subject><subject>Hematologic Tests</subject><subject>Image Processing, Computer-Assisted</subject><subject>image segmentation</subject><subject>Instruments & Instrumentation</subject><subject>Letter</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Normal Distribution</subject><subject>Physical Sciences</subject><subject>Sampling</subject><subject>Science & Technology</subject><subject>Support vector machines</subject><subject>Technology</subject><subject>Veins</subject><subject>Veins & arteries</subject><subject>Veins - diagnostic imaging</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNqNkluL1DAUgIso7kUf_ANS8MVFRnNrk74Ia3F1YEBx1deQJifdDG0yJq3ivzezHYddnyQPuZwvXw4npyieYfSa0ga9SQSjPCh5UJxiRthKEIIe3lmfFGcpbREilFLxuDjJE28IpqfF9gskUFHflMGXV873EMvv4Hy5HlUP5TX0I_hJTS6HlTfluyEEU16rcTdkuPwcnJ_KTdALke9dzlMY804f0DYMA-h99EnxyKohwdPDfF58u3r_tf242nz6sG4vNyvN6mZaMSKwpZUhtENK1BZrZqrGMN4xq5RAwtbAmQHFKw0Ea8y5rQknSDBTc0PpebFevCaordxFN6r4Wwbl5O1BiL1UMSc4gDRNRYXpstYa1gghKss7jgEjjQVBKrveLq7d3I1gdK5FVMM96f2IdzeyDz8l51ld8Sx4eRDE8GOGNMnRJQ3DoDyEOUnCOGNN3Yg9-uIfdBvm6HOpbqmKYMJwpi4WSseQUgR7TAYjue8GeeyGzD6_m_2R_Pv9GXi1AL-gCzZpB17DEUMI1SiXVrC8Qvunxf_TrVu6pg2zn-gf9i_PZg</recordid><startdate>20201228</startdate><enddate>20201228</enddate><creator>Li, Xi</creator><creator>Li, Zhangyong</creator><creator>Yang, Dewei</creator><creator>Zhong, Lisha</creator><creator>Huang, Lian</creator><creator>Lin, Jinzhao</creator><general>Mdpi</general><general>MDPI AG</general><general>MDPI</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3914-4445</orcidid><orcidid>https://orcid.org/0000-0003-4157-9066</orcidid><orcidid>https://orcid.org/0000-0002-3918-069X</orcidid></search><sort><creationdate>20201228</creationdate><title>Research on Finger Vein Image Segmentation and Blood Sampling Point Location in Automatic Blood Collection</title><author>Li, Xi ; Li, Zhangyong ; Yang, Dewei ; Zhong, Lisha ; Huang, Lian ; Lin, Jinzhao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-4281f35d23b0a86f1c4d59d47b4faa808f6e74dea75ce21c177f6272084d67d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Blood</topic><topic>Chemistry</topic><topic>Chemistry, Analytical</topic><topic>Corner detection</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Engineering</topic><topic>Engineering, Electrical & Electronic</topic><topic>Entropy</topic><topic>finger vein</topic><topic>Fuzzy sets</topic><topic>Gabor</topic><topic>Gabor filters</topic><topic>Gabor transformation</topic><topic>Gaussian mixture model</topic><topic>Hematologic Tests</topic><topic>Image Processing, Computer-Assisted</topic><topic>image segmentation</topic><topic>Instruments & Instrumentation</topic><topic>Letter</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Normal Distribution</topic><topic>Physical Sciences</topic><topic>Sampling</topic><topic>Science & Technology</topic><topic>Support vector machines</topic><topic>Technology</topic><topic>Veins</topic><topic>Veins & arteries</topic><topic>Veins - diagnostic imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xi</creatorcontrib><creatorcontrib>Li, Zhangyong</creatorcontrib><creatorcontrib>Yang, Dewei</creatorcontrib><creatorcontrib>Zhong, Lisha</creatorcontrib><creatorcontrib>Huang, Lian</creatorcontrib><creatorcontrib>Lin, Jinzhao</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xi</au><au>Li, Zhangyong</au><au>Yang, Dewei</au><au>Zhong, Lisha</au><au>Huang, Lian</au><au>Lin, Jinzhao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on Finger Vein Image Segmentation and Blood Sampling Point Location in Automatic Blood Collection</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><stitle>SENSORS-BASEL</stitle><addtitle>Sensors (Basel)</addtitle><date>2020-12-28</date><risdate>2020</risdate><volume>21</volume><issue>1</issue><spage>132</spage><pages>132-</pages><artnum>132</artnum><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>In the fingertip blood automatic sampling process, when the blood sampling point in the fingertip venous area, it will greatly increase the amount of bleeding without being squeezed. In order to accurately locate the blood sampling point in the venous area, we propose a new finger vein image segmentation approach basing on Gabor transform and Gaussian mixed model (GMM). Firstly, Gabor filter parameter can be set adaptively according to the differential excitation of image and we use the local binary pattern (LBP) to fuse the same-scale and multi-orientation Gabor features of the image. Then, finger vein image segmentation is achieved by Gabor-GMM system and optimized by the max flow min cut method which is based on the relative entropy of the foreground and the background. Finally, the blood sampling point can be localized with corner detection. The experimental results show that the proposed approach has significant performance in segmenting finger vein images which the average accuracy of segmentation images reach 91.6%.</abstract><cop>BASEL</cop><pub>Mdpi</pub><pmid>33379213</pmid><doi>10.3390/s21010132</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3914-4445</orcidid><orcidid>https://orcid.org/0000-0003-4157-9066</orcidid><orcidid>https://orcid.org/0000-0002-3918-069X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2020-12, Vol.21 (1), p.132, Article 132 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_crossref_primary_10_3390_s21010132 |
source | MEDLINE; DOAJ Directory of Open Access Journals; MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Accuracy Algorithms Blood Chemistry Chemistry, Analytical Corner detection Datasets Deep learning Engineering Engineering, Electrical & Electronic Entropy finger vein Fuzzy sets Gabor Gabor filters Gabor transformation Gaussian mixture model Hematologic Tests Image Processing, Computer-Assisted image segmentation Instruments & Instrumentation Letter Methods Neural networks Normal Distribution Physical Sciences Sampling Science & Technology Support vector machines Technology Veins Veins & arteries Veins - diagnostic imaging |
title | Research on Finger Vein Image Segmentation and Blood Sampling Point Location in Automatic Blood Collection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T20%3A49%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20Finger%20Vein%20Image%20Segmentation%20and%20Blood%20Sampling%20Point%20Location%20in%20Automatic%20Blood%20Collection&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Li,%20Xi&rft.date=2020-12-28&rft.volume=21&rft.issue=1&rft.spage=132&rft.pages=132-&rft.artnum=132&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s21010132&rft_dat=%3Cproquest_cross%3E2474496987%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2474521241&rft_id=info:pmid/33379213&rft_doaj_id=oai_doaj_org_article_d9538dbaa8fd498885f7b71e10c1820a&rfr_iscdi=true |