UVSQ-SAT, a Pathfinder CubeSat Mission for Observing Essential Climate Variables

The UltraViolet and infrared Sensors at high Quantum efficiency onboard a small SATellite (UVSQ-SAT) mission aims to demonstrate pioneering technologies for broadband measurement of the Earth's radiation budget (ERB) and solar spectral irradiance (SSI) in the Herzberg continuum (200-242 nm) usi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Switzerland), 2020-01, Vol.12 (1), p.92, Article 92
Hauptverfasser: Meftah, Mustapha, Dame, Luc, Keckhut, Philippe, Bekki, Slimane, Sarkissian, Alain, Hauchecorne, Alain, Bertran, Emmanuel, Carta, Jean-Paul, Rogers, David, Abbaki, Sadok, Dufour, Christophe, Gilbert, Pierre, Lapauw, Laurent, Vieau, Andre-Jean, Arrateig, Xavier, Muscat, Nicolas, Bove, Philippe, Sandana, Eric, Teherani, Ferechteh, Li, Tong, Pradel, Gilbert, Mahe, Michel, Mercier, Christophe, Paskeviciute, Agne, Segura, Kevin, Alba, Alicia Berciano, Aboulila, Ahmed, Chang, Loren, Chandran, Amal, Dahoo, Pierre-Richard, Bui, Alain
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The UltraViolet and infrared Sensors at high Quantum efficiency onboard a small SATellite (UVSQ-SAT) mission aims to demonstrate pioneering technologies for broadband measurement of the Earth's radiation budget (ERB) and solar spectral irradiance (SSI) in the Herzberg continuum (200-242 nm) using high quantum efficiency ultraviolet and infrared sensors. This research and innovation mission has been initiated by the University of Versailles Saint-Quentin-en-Yvelines (UVSQ) with the support of the International Satellite Program in Research and Education (INSPIRE). The motivation of the UVSQ-SAT mission is to experiment miniaturized remote sensing sensors that could be used in the multi-point observation of Essential Climate Variables (ECV) by a small satellite constellation. UVSQ-SAT represents the first step in this ambitious satellite constellation project which is currently under development under the responsibility of the Laboratory Atmospheres, Environments, Space Observations (LATMOS), with the UVSQ-SAT CubeSat launch planned for 2020/2021. The UVSQ-SAT scientific payload consists of twelve miniaturized thermopile-based radiation sensors for monitoring incoming solar radiation and outgoing terrestrial radiation, four photodiodes that benefit from the intrinsic advantages of Gaalloy-based sensors made by pulsed laser deposition for measuring solar UV spectral irradiance, and a new three-axis accelerometer/gyroscope/compass for satellite attitude estimation. We present here the scientific objectives of the UVSQ-SAT mission along the concepts and properties of the CubeSat platform and its payload. We also present the results of a numerical simulation study on the spatial reconstruction of the Earth's radiation budget, on a geographical grid of 1degree latitude-longitude, that could be achieved with UVSQ-SAT for different observation periods.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs12010092