Morphology and Mechanical Properties of Fossil Diatom Frustules from Genera of Ellerbeckia and Melosira

Fossil frustules of Ellerbeckia and Melosira were studied using laboratory-based nano X-ray tomography (nano-XCT), transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS). Three-dimensional (3D) morphology characterization using nondestructive nano-XCT reveals the conti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanomaterials (Basel, Switzerland) Switzerland), 2021-06, Vol.11 (6), p.1615
Hauptverfasser: Li, Qiong, Gluch, Jürgen, Liao, Zhongquan, Posseckardt, Juliane, Clausner, André, Łępicka, Magdalena, Grądzka-Dahlke, Małgorzata, Zschech, Ehrenfried
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 1615
container_title Nanomaterials (Basel, Switzerland)
container_volume 11
creator Li, Qiong
Gluch, Jürgen
Liao, Zhongquan
Posseckardt, Juliane
Clausner, André
Łępicka, Magdalena
Grądzka-Dahlke, Małgorzata
Zschech, Ehrenfried
description Fossil frustules of Ellerbeckia and Melosira were studied using laboratory-based nano X-ray tomography (nano-XCT), transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS). Three-dimensional (3D) morphology characterization using nondestructive nano-XCT reveals the continuous connection of fultoportulae, tube processes and protrusions. The study confirms that Ellerbeckia is different from Melosira. Both genera reveal heavily silicified frustules with valve faces linking together and forming cylindrical chains. For this cylindrical architecture of both genera, valve face thickness, mantle wall thickness and copulae thickness change with the cylindrical diameter. Furthermore, EDS reveals that these fossil frustules contain Si and O only, with no other elements in the percentage concentration range. Nanopores with a diameter of approximately 15 nm were detected inside the biosilica of both genera using TEM. In situ micromechanical experiments with uniaxial loading were carried out within the nano-XCT on these fossil frustules to determine the maximal loading force under compression and to describe the fracture behavior. The fracture force of both genera is correlated to the dimension of the fossil frustules. The results from in situ mechanical tests show that the crack initiation starts either at very thin features or at linking structures of the frustules.
doi_str_mv 10.3390/nano11061615
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_crossref_primary_10_3390_nano11061615</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1347a2a3eef54ab9b65cb8c852d3fa7d</doaj_id><sourcerecordid>2544916276</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-1b7386aabbdd7c2071c1a217dbbd1ba00319c0e24a88fa4eccb5bc85d435ed5a3</originalsourceid><addsrcrecordid>eNpdkk1vEzEQQC0EolXpjR-wEhcOhPpzd31BQm1TKrWCA5ytsT2bODjrYO8i9d_jNFHV4ovtmaenGXsIec_oZyE0vRhhTIzRlrVMvSKnnHZ6IbVmr5-dT8h5KRtal2aiV-ItORGSU661PiWr-5R36xTT6qGB0Tf36NYwBgex-ZHTDvMUsDRpaJaplBCbqwBT2jbLPJdpjjU15Hq9wREz7LHrGDFbdL8DHH0xlZDhHXkzQCx4ftzPyK_l9c_Lb4u77ze3l1_vFk4yPi2Y7UTfAljrfedqC8wx4KzzNcAsUCqYdhS5hL4fQKJzVlnXKy-FQq9AnJHbg9cn2JhdDlvIDyZBMI-BlFcGak8uomFCdsBBIA5KgtW2Vc72Vca9GKDz1fXl4NrNdove4ThliC-kLzNjWJtV-mt6LlTb9VXw8SjI6c-MZTLbUBzGCCOmuRiuZC-ZFI_oh__QTZrzWJ9qT0nNWt61lfp0oFyu35FxeCqGUbMfCPN8IMQ_tU-pjw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2544916276</pqid></control><display><type>article</type><title>Morphology and Mechanical Properties of Fossil Diatom Frustules from Genera of Ellerbeckia and Melosira</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><source>PubMed Central Open Access</source><creator>Li, Qiong ; Gluch, Jürgen ; Liao, Zhongquan ; Posseckardt, Juliane ; Clausner, André ; Łępicka, Magdalena ; Grądzka-Dahlke, Małgorzata ; Zschech, Ehrenfried</creator><creatorcontrib>Li, Qiong ; Gluch, Jürgen ; Liao, Zhongquan ; Posseckardt, Juliane ; Clausner, André ; Łępicka, Magdalena ; Grądzka-Dahlke, Małgorzata ; Zschech, Ehrenfried</creatorcontrib><description>Fossil frustules of Ellerbeckia and Melosira were studied using laboratory-based nano X-ray tomography (nano-XCT), transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS). Three-dimensional (3D) morphology characterization using nondestructive nano-XCT reveals the continuous connection of fultoportulae, tube processes and protrusions. The study confirms that Ellerbeckia is different from Melosira. Both genera reveal heavily silicified frustules with valve faces linking together and forming cylindrical chains. For this cylindrical architecture of both genera, valve face thickness, mantle wall thickness and copulae thickness change with the cylindrical diameter. Furthermore, EDS reveals that these fossil frustules contain Si and O only, with no other elements in the percentage concentration range. Nanopores with a diameter of approximately 15 nm were detected inside the biosilica of both genera using TEM. In situ micromechanical experiments with uniaxial loading were carried out within the nano-XCT on these fossil frustules to determine the maximal loading force under compression and to describe the fracture behavior. The fracture force of both genera is correlated to the dimension of the fossil frustules. The results from in situ mechanical tests show that the crack initiation starts either at very thin features or at linking structures of the frustules.</description><identifier>ISSN: 2079-4991</identifier><identifier>EISSN: 2079-4991</identifier><identifier>DOI: 10.3390/nano11061615</identifier><identifier>PMID: 34202999</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>3D visualization ; Composite materials ; Compression ; Crack initiation ; Diameters ; diatom ; Ellerbeckia ; Experiments ; Field tests ; fossil frustule ; Fossils ; Mechanical properties ; Mechanical tests ; Melosira ; micromechanical behavior ; Morphology ; Scanning electron microscopy ; Silicon ; Tomography ; Transmission electron microscopy ; Wall thickness ; X-ray computed tomography ; X-ray spectroscopy</subject><ispartof>Nanomaterials (Basel, Switzerland), 2021-06, Vol.11 (6), p.1615</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c412t-1b7386aabbdd7c2071c1a217dbbd1ba00319c0e24a88fa4eccb5bc85d435ed5a3</cites><orcidid>0000-0001-7868-4594 ; 0000-0002-1295-4333 ; 0000-0003-4612-1441 ; 0000-0001-5566-3002</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8235678/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8235678/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,27926,27927,53793,53795</link.rule.ids></links><search><creatorcontrib>Li, Qiong</creatorcontrib><creatorcontrib>Gluch, Jürgen</creatorcontrib><creatorcontrib>Liao, Zhongquan</creatorcontrib><creatorcontrib>Posseckardt, Juliane</creatorcontrib><creatorcontrib>Clausner, André</creatorcontrib><creatorcontrib>Łępicka, Magdalena</creatorcontrib><creatorcontrib>Grądzka-Dahlke, Małgorzata</creatorcontrib><creatorcontrib>Zschech, Ehrenfried</creatorcontrib><title>Morphology and Mechanical Properties of Fossil Diatom Frustules from Genera of Ellerbeckia and Melosira</title><title>Nanomaterials (Basel, Switzerland)</title><description>Fossil frustules of Ellerbeckia and Melosira were studied using laboratory-based nano X-ray tomography (nano-XCT), transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS). Three-dimensional (3D) morphology characterization using nondestructive nano-XCT reveals the continuous connection of fultoportulae, tube processes and protrusions. The study confirms that Ellerbeckia is different from Melosira. Both genera reveal heavily silicified frustules with valve faces linking together and forming cylindrical chains. For this cylindrical architecture of both genera, valve face thickness, mantle wall thickness and copulae thickness change with the cylindrical diameter. Furthermore, EDS reveals that these fossil frustules contain Si and O only, with no other elements in the percentage concentration range. Nanopores with a diameter of approximately 15 nm were detected inside the biosilica of both genera using TEM. In situ micromechanical experiments with uniaxial loading were carried out within the nano-XCT on these fossil frustules to determine the maximal loading force under compression and to describe the fracture behavior. The fracture force of both genera is correlated to the dimension of the fossil frustules. The results from in situ mechanical tests show that the crack initiation starts either at very thin features or at linking structures of the frustules.</description><subject>3D visualization</subject><subject>Composite materials</subject><subject>Compression</subject><subject>Crack initiation</subject><subject>Diameters</subject><subject>diatom</subject><subject>Ellerbeckia</subject><subject>Experiments</subject><subject>Field tests</subject><subject>fossil frustule</subject><subject>Fossils</subject><subject>Mechanical properties</subject><subject>Mechanical tests</subject><subject>Melosira</subject><subject>micromechanical behavior</subject><subject>Morphology</subject><subject>Scanning electron microscopy</subject><subject>Silicon</subject><subject>Tomography</subject><subject>Transmission electron microscopy</subject><subject>Wall thickness</subject><subject>X-ray computed tomography</subject><subject>X-ray spectroscopy</subject><issn>2079-4991</issn><issn>2079-4991</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNpdkk1vEzEQQC0EolXpjR-wEhcOhPpzd31BQm1TKrWCA5ytsT2bODjrYO8i9d_jNFHV4ovtmaenGXsIec_oZyE0vRhhTIzRlrVMvSKnnHZ6IbVmr5-dT8h5KRtal2aiV-ItORGSU661PiWr-5R36xTT6qGB0Tf36NYwBgex-ZHTDvMUsDRpaJaplBCbqwBT2jbLPJdpjjU15Hq9wREz7LHrGDFbdL8DHH0xlZDhHXkzQCx4ftzPyK_l9c_Lb4u77ze3l1_vFk4yPi2Y7UTfAljrfedqC8wx4KzzNcAsUCqYdhS5hL4fQKJzVlnXKy-FQq9AnJHbg9cn2JhdDlvIDyZBMI-BlFcGak8uomFCdsBBIA5KgtW2Vc72Vca9GKDz1fXl4NrNdove4ThliC-kLzNjWJtV-mt6LlTb9VXw8SjI6c-MZTLbUBzGCCOmuRiuZC-ZFI_oh__QTZrzWJ9qT0nNWt61lfp0oFyu35FxeCqGUbMfCPN8IMQ_tU-pjw</recordid><startdate>20210620</startdate><enddate>20210620</enddate><creator>Li, Qiong</creator><creator>Gluch, Jürgen</creator><creator>Liao, Zhongquan</creator><creator>Posseckardt, Juliane</creator><creator>Clausner, André</creator><creator>Łępicka, Magdalena</creator><creator>Grądzka-Dahlke, Małgorzata</creator><creator>Zschech, Ehrenfried</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7868-4594</orcidid><orcidid>https://orcid.org/0000-0002-1295-4333</orcidid><orcidid>https://orcid.org/0000-0003-4612-1441</orcidid><orcidid>https://orcid.org/0000-0001-5566-3002</orcidid></search><sort><creationdate>20210620</creationdate><title>Morphology and Mechanical Properties of Fossil Diatom Frustules from Genera of Ellerbeckia and Melosira</title><author>Li, Qiong ; Gluch, Jürgen ; Liao, Zhongquan ; Posseckardt, Juliane ; Clausner, André ; Łępicka, Magdalena ; Grądzka-Dahlke, Małgorzata ; Zschech, Ehrenfried</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-1b7386aabbdd7c2071c1a217dbbd1ba00319c0e24a88fa4eccb5bc85d435ed5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>3D visualization</topic><topic>Composite materials</topic><topic>Compression</topic><topic>Crack initiation</topic><topic>Diameters</topic><topic>diatom</topic><topic>Ellerbeckia</topic><topic>Experiments</topic><topic>Field tests</topic><topic>fossil frustule</topic><topic>Fossils</topic><topic>Mechanical properties</topic><topic>Mechanical tests</topic><topic>Melosira</topic><topic>micromechanical behavior</topic><topic>Morphology</topic><topic>Scanning electron microscopy</topic><topic>Silicon</topic><topic>Tomography</topic><topic>Transmission electron microscopy</topic><topic>Wall thickness</topic><topic>X-ray computed tomography</topic><topic>X-ray spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Qiong</creatorcontrib><creatorcontrib>Gluch, Jürgen</creatorcontrib><creatorcontrib>Liao, Zhongquan</creatorcontrib><creatorcontrib>Posseckardt, Juliane</creatorcontrib><creatorcontrib>Clausner, André</creatorcontrib><creatorcontrib>Łępicka, Magdalena</creatorcontrib><creatorcontrib>Grądzka-Dahlke, Małgorzata</creatorcontrib><creatorcontrib>Zschech, Ehrenfried</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials science collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nanomaterials (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Qiong</au><au>Gluch, Jürgen</au><au>Liao, Zhongquan</au><au>Posseckardt, Juliane</au><au>Clausner, André</au><au>Łępicka, Magdalena</au><au>Grądzka-Dahlke, Małgorzata</au><au>Zschech, Ehrenfried</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Morphology and Mechanical Properties of Fossil Diatom Frustules from Genera of Ellerbeckia and Melosira</atitle><jtitle>Nanomaterials (Basel, Switzerland)</jtitle><date>2021-06-20</date><risdate>2021</risdate><volume>11</volume><issue>6</issue><spage>1615</spage><pages>1615-</pages><issn>2079-4991</issn><eissn>2079-4991</eissn><abstract>Fossil frustules of Ellerbeckia and Melosira were studied using laboratory-based nano X-ray tomography (nano-XCT), transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS). Three-dimensional (3D) morphology characterization using nondestructive nano-XCT reveals the continuous connection of fultoportulae, tube processes and protrusions. The study confirms that Ellerbeckia is different from Melosira. Both genera reveal heavily silicified frustules with valve faces linking together and forming cylindrical chains. For this cylindrical architecture of both genera, valve face thickness, mantle wall thickness and copulae thickness change with the cylindrical diameter. Furthermore, EDS reveals that these fossil frustules contain Si and O only, with no other elements in the percentage concentration range. Nanopores with a diameter of approximately 15 nm were detected inside the biosilica of both genera using TEM. In situ micromechanical experiments with uniaxial loading were carried out within the nano-XCT on these fossil frustules to determine the maximal loading force under compression and to describe the fracture behavior. The fracture force of both genera is correlated to the dimension of the fossil frustules. The results from in situ mechanical tests show that the crack initiation starts either at very thin features or at linking structures of the frustules.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34202999</pmid><doi>10.3390/nano11061615</doi><orcidid>https://orcid.org/0000-0001-7868-4594</orcidid><orcidid>https://orcid.org/0000-0002-1295-4333</orcidid><orcidid>https://orcid.org/0000-0003-4612-1441</orcidid><orcidid>https://orcid.org/0000-0001-5566-3002</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-4991
ispartof Nanomaterials (Basel, Switzerland), 2021-06, Vol.11 (6), p.1615
issn 2079-4991
2079-4991
language eng
recordid cdi_crossref_primary_10_3390_nano11061615
source MDPI - Multidisciplinary Digital Publishing Institute; DOAJ Directory of Open Access Journals; PubMed Central; EZB Electronic Journals Library; PubMed Central Open Access
subjects 3D visualization
Composite materials
Compression
Crack initiation
Diameters
diatom
Ellerbeckia
Experiments
Field tests
fossil frustule
Fossils
Mechanical properties
Mechanical tests
Melosira
micromechanical behavior
Morphology
Scanning electron microscopy
Silicon
Tomography
Transmission electron microscopy
Wall thickness
X-ray computed tomography
X-ray spectroscopy
title Morphology and Mechanical Properties of Fossil Diatom Frustules from Genera of Ellerbeckia and Melosira
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T19%3A43%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Morphology%20and%20Mechanical%20Properties%20of%20Fossil%20Diatom%20Frustules%20from%20Genera%20of%20Ellerbeckia%20and%20Melosira&rft.jtitle=Nanomaterials%20(Basel,%20Switzerland)&rft.au=Li,%20Qiong&rft.date=2021-06-20&rft.volume=11&rft.issue=6&rft.spage=1615&rft.pages=1615-&rft.issn=2079-4991&rft.eissn=2079-4991&rft_id=info:doi/10.3390/nano11061615&rft_dat=%3Cproquest_doaj_%3E2544916276%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2544916276&rft_id=info:pmid/34202999&rft_doaj_id=oai_doaj_org_article_1347a2a3eef54ab9b65cb8c852d3fa7d&rfr_iscdi=true