Excited States Symmetry Breaking and In-Plane Polarization Cause Chiral Reversal in Diastereomers
In this work, we investigate the electronic transitions and chirality of three isomers of huge conjugated systems: asymmetric diastereomers (MMMM) and two symmetrical diastereomers (PMPM and PPMM). The physical mechanism of flipping has been studied theoretically. The new ribbon-shaped polycyclic ar...
Gespeichert in:
Veröffentlicht in: | Molecules (Basel, Switzerland) Switzerland), 2021-08, Vol.26 (15), p.4680, Article 4680 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work, we investigate the electronic transitions and chirality of three isomers of huge conjugated systems: asymmetric diastereomers (MMMM) and two symmetrical diastereomers (PMPM and PPMM). The physical mechanism of flipping has been studied theoretically. The new ribbon-shaped polycyclic aromatic hydrocarbons (PAHs) molecule is formed by connecting three graphene-like systems with large conjugated pi orbitals. By calculating and analyzing electromagnetic interaction decomposition over distance, it can be found that the chirality reversal of different energies is caused by the symmetrical fracture of TMDM in the Z direction. The chirality reversal at the same energy is caused by the in-plane polarization of the TMDM along the Y direction. |
---|---|
ISSN: | 1420-3049 1420-3049 |
DOI: | 10.3390/molecules26154680 |