Kinetics of the Thermal Decomposition of Rhodochrosite

Manganese is a widely used element in the steel industry; its main source is a mineral named rhodochrosite (MnCO3). For industrial usage, rhodochrosite is reduced to different manganese oxides by means of nodulation furnaces. In this study, rhodochrosite was thermally analyzed at temperatures rangin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Minerals (Basel) 2021-01, Vol.11 (1), p.34
Hauptverfasser: Reyes, Iván A., Flores, Mizraim, Palacios, Elia G., Islas, Hernán, Juárez, Julio C., Reyes, Martín, Teja, Aislinn M., Pérez, Cristóbal A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 34
container_title Minerals (Basel)
container_volume 11
creator Reyes, Iván A.
Flores, Mizraim
Palacios, Elia G.
Islas, Hernán
Juárez, Julio C.
Reyes, Martín
Teja, Aislinn M.
Pérez, Cristóbal A.
description Manganese is a widely used element in the steel industry; its main source is a mineral named rhodochrosite (MnCO3). For industrial usage, rhodochrosite is reduced to different manganese oxides by means of nodulation furnaces. In this study, rhodochrosite was thermally analyzed at temperatures ranging from 100 °C to 1200 °C. XRD (Powder X-ray diffraction), XRF (X-ray fluorescence), AAS (Atomic Absorption Spectrometry), and FESEM-EDX (Field Emission Scanning Electron Microscopy-Energy Dispersive X-ray Spectrometry) were used to characterize the mineral and the residues were analyzed by XRD and FTIR (Fourier-transform infrared spectroscopy) to determine the stoichiometry of the thermal decomposition reactions. Three mass losses were observed, the first attributed to the transformation from carbonate to manganese (III) oxide, the second to the reduction to manganese tetroxide, and the third to the decomposition of calcium carbonate (CaCO3) present as a contaminant in the studied mineral. Thermal decomposition kinetics shows that the first mass loss required 17.91 kJ mol−1, indicating a control by mass transport-controlled process. For the second and third mass loss, the apparent activation energy of 112.41 kJ mol−1 and 64.69 kJ mol−1 was obtained respectively, indicating that both mass loss events were rate-controlled.
doi_str_mv 10.3390/min11010034
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_3390_min11010034</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_3390_min11010034</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-27fd957e61517612ee4fc8e2b6db14067feca2e017d97f588ebae454ce0db0453</originalsourceid><addsrcrecordid>eNpNT01Lw0AUXETBUnvyD-Qu0ff2MzmW1i8sCFLBW9hs3pKVJlt2c_Hf26CHzmWGGZhhGLtFuBeihochjIiAAEJesAUHo0rU4uvyTF-zVc7fcEKNolJ8wfRbGGkKLhfRF1NPxb6nNNhDsSUXh2PMYQpxnMOPPnbR9Wm26IZdeXvItPrnJft8etxvXsrd-_PrZr0rHTcwldz4rlaGNCo0GjmR9K4i3uquRQnaeHKWE6DpauNVVVFrSSrpCLoWpBJLdvfX6067OZFvjikMNv00CM38ujl7LX4BKYJKaA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Kinetics of the Thermal Decomposition of Rhodochrosite</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Reyes, Iván A. ; Flores, Mizraim ; Palacios, Elia G. ; Islas, Hernán ; Juárez, Julio C. ; Reyes, Martín ; Teja, Aislinn M. ; Pérez, Cristóbal A.</creator><creatorcontrib>Reyes, Iván A. ; Flores, Mizraim ; Palacios, Elia G. ; Islas, Hernán ; Juárez, Julio C. ; Reyes, Martín ; Teja, Aislinn M. ; Pérez, Cristóbal A.</creatorcontrib><description>Manganese is a widely used element in the steel industry; its main source is a mineral named rhodochrosite (MnCO3). For industrial usage, rhodochrosite is reduced to different manganese oxides by means of nodulation furnaces. In this study, rhodochrosite was thermally analyzed at temperatures ranging from 100 °C to 1200 °C. XRD (Powder X-ray diffraction), XRF (X-ray fluorescence), AAS (Atomic Absorption Spectrometry), and FESEM-EDX (Field Emission Scanning Electron Microscopy-Energy Dispersive X-ray Spectrometry) were used to characterize the mineral and the residues were analyzed by XRD and FTIR (Fourier-transform infrared spectroscopy) to determine the stoichiometry of the thermal decomposition reactions. Three mass losses were observed, the first attributed to the transformation from carbonate to manganese (III) oxide, the second to the reduction to manganese tetroxide, and the third to the decomposition of calcium carbonate (CaCO3) present as a contaminant in the studied mineral. Thermal decomposition kinetics shows that the first mass loss required 17.91 kJ mol−1, indicating a control by mass transport-controlled process. For the second and third mass loss, the apparent activation energy of 112.41 kJ mol−1 and 64.69 kJ mol−1 was obtained respectively, indicating that both mass loss events were rate-controlled.</description><identifier>ISSN: 2075-163X</identifier><identifier>EISSN: 2075-163X</identifier><identifier>DOI: 10.3390/min11010034</identifier><language>eng</language><ispartof>Minerals (Basel), 2021-01, Vol.11 (1), p.34</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c270t-27fd957e61517612ee4fc8e2b6db14067feca2e017d97f588ebae454ce0db0453</citedby><cites>FETCH-LOGICAL-c270t-27fd957e61517612ee4fc8e2b6db14067feca2e017d97f588ebae454ce0db0453</cites><orcidid>0000-0001-8069-6922 ; 0000-0003-3843-2397 ; 0000-0002-9503-7599 ; 0000-0001-7058-1670 ; 0000-0003-4041-7110 ; 0000-0002-6154-8294</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Reyes, Iván A.</creatorcontrib><creatorcontrib>Flores, Mizraim</creatorcontrib><creatorcontrib>Palacios, Elia G.</creatorcontrib><creatorcontrib>Islas, Hernán</creatorcontrib><creatorcontrib>Juárez, Julio C.</creatorcontrib><creatorcontrib>Reyes, Martín</creatorcontrib><creatorcontrib>Teja, Aislinn M.</creatorcontrib><creatorcontrib>Pérez, Cristóbal A.</creatorcontrib><title>Kinetics of the Thermal Decomposition of Rhodochrosite</title><title>Minerals (Basel)</title><description>Manganese is a widely used element in the steel industry; its main source is a mineral named rhodochrosite (MnCO3). For industrial usage, rhodochrosite is reduced to different manganese oxides by means of nodulation furnaces. In this study, rhodochrosite was thermally analyzed at temperatures ranging from 100 °C to 1200 °C. XRD (Powder X-ray diffraction), XRF (X-ray fluorescence), AAS (Atomic Absorption Spectrometry), and FESEM-EDX (Field Emission Scanning Electron Microscopy-Energy Dispersive X-ray Spectrometry) were used to characterize the mineral and the residues were analyzed by XRD and FTIR (Fourier-transform infrared spectroscopy) to determine the stoichiometry of the thermal decomposition reactions. Three mass losses were observed, the first attributed to the transformation from carbonate to manganese (III) oxide, the second to the reduction to manganese tetroxide, and the third to the decomposition of calcium carbonate (CaCO3) present as a contaminant in the studied mineral. Thermal decomposition kinetics shows that the first mass loss required 17.91 kJ mol−1, indicating a control by mass transport-controlled process. For the second and third mass loss, the apparent activation energy of 112.41 kJ mol−1 and 64.69 kJ mol−1 was obtained respectively, indicating that both mass loss events were rate-controlled.</description><issn>2075-163X</issn><issn>2075-163X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpNT01Lw0AUXETBUnvyD-Qu0ff2MzmW1i8sCFLBW9hs3pKVJlt2c_Hf26CHzmWGGZhhGLtFuBeihochjIiAAEJesAUHo0rU4uvyTF-zVc7fcEKNolJ8wfRbGGkKLhfRF1NPxb6nNNhDsSUXh2PMYQpxnMOPPnbR9Wm26IZdeXvItPrnJft8etxvXsrd-_PrZr0rHTcwldz4rlaGNCo0GjmR9K4i3uquRQnaeHKWE6DpauNVVVFrSSrpCLoWpBJLdvfX6067OZFvjikMNv00CM38ujl7LX4BKYJKaA</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Reyes, Iván A.</creator><creator>Flores, Mizraim</creator><creator>Palacios, Elia G.</creator><creator>Islas, Hernán</creator><creator>Juárez, Julio C.</creator><creator>Reyes, Martín</creator><creator>Teja, Aislinn M.</creator><creator>Pérez, Cristóbal A.</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8069-6922</orcidid><orcidid>https://orcid.org/0000-0003-3843-2397</orcidid><orcidid>https://orcid.org/0000-0002-9503-7599</orcidid><orcidid>https://orcid.org/0000-0001-7058-1670</orcidid><orcidid>https://orcid.org/0000-0003-4041-7110</orcidid><orcidid>https://orcid.org/0000-0002-6154-8294</orcidid></search><sort><creationdate>20210101</creationdate><title>Kinetics of the Thermal Decomposition of Rhodochrosite</title><author>Reyes, Iván A. ; Flores, Mizraim ; Palacios, Elia G. ; Islas, Hernán ; Juárez, Julio C. ; Reyes, Martín ; Teja, Aislinn M. ; Pérez, Cristóbal A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-27fd957e61517612ee4fc8e2b6db14067feca2e017d97f588ebae454ce0db0453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reyes, Iván A.</creatorcontrib><creatorcontrib>Flores, Mizraim</creatorcontrib><creatorcontrib>Palacios, Elia G.</creatorcontrib><creatorcontrib>Islas, Hernán</creatorcontrib><creatorcontrib>Juárez, Julio C.</creatorcontrib><creatorcontrib>Reyes, Martín</creatorcontrib><creatorcontrib>Teja, Aislinn M.</creatorcontrib><creatorcontrib>Pérez, Cristóbal A.</creatorcontrib><collection>CrossRef</collection><jtitle>Minerals (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reyes, Iván A.</au><au>Flores, Mizraim</au><au>Palacios, Elia G.</au><au>Islas, Hernán</au><au>Juárez, Julio C.</au><au>Reyes, Martín</au><au>Teja, Aislinn M.</au><au>Pérez, Cristóbal A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetics of the Thermal Decomposition of Rhodochrosite</atitle><jtitle>Minerals (Basel)</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>11</volume><issue>1</issue><spage>34</spage><pages>34-</pages><issn>2075-163X</issn><eissn>2075-163X</eissn><abstract>Manganese is a widely used element in the steel industry; its main source is a mineral named rhodochrosite (MnCO3). For industrial usage, rhodochrosite is reduced to different manganese oxides by means of nodulation furnaces. In this study, rhodochrosite was thermally analyzed at temperatures ranging from 100 °C to 1200 °C. XRD (Powder X-ray diffraction), XRF (X-ray fluorescence), AAS (Atomic Absorption Spectrometry), and FESEM-EDX (Field Emission Scanning Electron Microscopy-Energy Dispersive X-ray Spectrometry) were used to characterize the mineral and the residues were analyzed by XRD and FTIR (Fourier-transform infrared spectroscopy) to determine the stoichiometry of the thermal decomposition reactions. Three mass losses were observed, the first attributed to the transformation from carbonate to manganese (III) oxide, the second to the reduction to manganese tetroxide, and the third to the decomposition of calcium carbonate (CaCO3) present as a contaminant in the studied mineral. Thermal decomposition kinetics shows that the first mass loss required 17.91 kJ mol−1, indicating a control by mass transport-controlled process. For the second and third mass loss, the apparent activation energy of 112.41 kJ mol−1 and 64.69 kJ mol−1 was obtained respectively, indicating that both mass loss events were rate-controlled.</abstract><doi>10.3390/min11010034</doi><orcidid>https://orcid.org/0000-0001-8069-6922</orcidid><orcidid>https://orcid.org/0000-0003-3843-2397</orcidid><orcidid>https://orcid.org/0000-0002-9503-7599</orcidid><orcidid>https://orcid.org/0000-0001-7058-1670</orcidid><orcidid>https://orcid.org/0000-0003-4041-7110</orcidid><orcidid>https://orcid.org/0000-0002-6154-8294</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2075-163X
ispartof Minerals (Basel), 2021-01, Vol.11 (1), p.34
issn 2075-163X
2075-163X
language eng
recordid cdi_crossref_primary_10_3390_min11010034
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
title Kinetics of the Thermal Decomposition of Rhodochrosite
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T03%3A00%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetics%20of%20the%20Thermal%20Decomposition%20of%20Rhodochrosite&rft.jtitle=Minerals%20(Basel)&rft.au=Reyes,%20Iv%C3%A1n%20A.&rft.date=2021-01-01&rft.volume=11&rft.issue=1&rft.spage=34&rft.pages=34-&rft.issn=2075-163X&rft.eissn=2075-163X&rft_id=info:doi/10.3390/min11010034&rft_dat=%3Ccrossref%3E10_3390_min11010034%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true