Oscillation Criteria for Third-Order Nonlinear Neutral Dynamic Equations with Mixed Deviating Arguments on Time Scales

Under a couple of canonical and mixed canonical-noncanonical conditions, we investigate the oscillation and asymptotic behavior of solutions to a class of third-order nonlinear neutral dynamic equations with mixed deviating arguments on time scales. By means of the double Riccati transformation and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2021-03, Vol.9 (5), p.552, Article 552
Hauptverfasser: Zhang, Zhiyu, Feng, Ruihua, Jadlovska, Irena, Liu, Qingmin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 552
container_title Mathematics (Basel)
container_volume 9
creator Zhang, Zhiyu
Feng, Ruihua
Jadlovska, Irena
Liu, Qingmin
description Under a couple of canonical and mixed canonical-noncanonical conditions, we investigate the oscillation and asymptotic behavior of solutions to a class of third-order nonlinear neutral dynamic equations with mixed deviating arguments on time scales. By means of the double Riccati transformation and the inequality technique, new oscillation criteria are established, which improve and generalize related results in the literature. Several examples are given to illustrate the main results.
doi_str_mv 10.3390/math9050552
format Article
fullrecord <record><control><sourceid>webofscience_cross</sourceid><recordid>TN_cdi_crossref_primary_10_3390_math9050552</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_be3cd90d63af4312bdc311bb3d45dea4</doaj_id><sourcerecordid>000628372500001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-778044c39a54b6f71738cfd0f41efc70f7fa110d5ff1533dbbf8ee59cd1d19a23</originalsourceid><addsrcrecordid>eNqNkU9P3DAQxSMEEgg48QV8Ryl2Jl4nRxRoQaLsocs5mtjjXaMkbm0vf749Zqkox85lRk9vfof3iuJM8G8ALb-YMG1aLrmU1V5xVFWVKlXW97_ch8VpjI88Tyugqduj4mkZtRtHTM7PrAsuUXDIrA9stXHBlMtgKLB7P49uJswXbVPAkV29zjg5za7_bHe_kT27tGE_3QsZdkVPLqvzml2G9XaiOUWW8Ss3EfulcaR4UhxYHCOd_t3HxcP361V3U94tf9x2l3elBlikUqmG17WGFmU9LKwSChptDbe1IKsVt8qiENxIa4UEMMNgGyLZaiOMaLGC4-L2g2s8Pva_g5swvPYeXb8TfFj3GJLTI_UDgTYtNwtAW4OoBqNBiGEAU0tDWGfW-QdLBx9jIPvJE7x_b6D_0sA_9zMN3uaQadb0-ZEbWFQNqEq-lyGyu_l_d-fSLvPOb-cEbxqsnF4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Oscillation Criteria for Third-Order Nonlinear Neutral Dynamic Equations with Mixed Deviating Arguments on Time Scales</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>DOAJ Directory of Open Access Journals</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Zhang, Zhiyu ; Feng, Ruihua ; Jadlovska, Irena ; Liu, Qingmin</creator><creatorcontrib>Zhang, Zhiyu ; Feng, Ruihua ; Jadlovska, Irena ; Liu, Qingmin</creatorcontrib><description>Under a couple of canonical and mixed canonical-noncanonical conditions, we investigate the oscillation and asymptotic behavior of solutions to a class of third-order nonlinear neutral dynamic equations with mixed deviating arguments on time scales. By means of the double Riccati transformation and the inequality technique, new oscillation criteria are established, which improve and generalize related results in the literature. Several examples are given to illustrate the main results.</description><identifier>ISSN: 2227-7390</identifier><identifier>EISSN: 2227-7390</identifier><identifier>DOI: 10.3390/math9050552</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>double Riccati transformation ; Mathematics ; mixed canonical-noncanonical condition ; mixed deviating argument ; oscillation criterion ; Physical Sciences ; Science &amp; Technology ; third-order neutral dynamic equation ; time scale</subject><ispartof>Mathematics (Basel), 2021-03, Vol.9 (5), p.552, Article 552</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>3</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000628372500001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c336t-778044c39a54b6f71738cfd0f41efc70f7fa110d5ff1533dbbf8ee59cd1d19a23</citedby><cites>FETCH-LOGICAL-c336t-778044c39a54b6f71738cfd0f41efc70f7fa110d5ff1533dbbf8ee59cd1d19a23</cites><orcidid>0000-0003-4649-5611</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,865,2103,2115,27929,27930,39263</link.rule.ids></links><search><creatorcontrib>Zhang, Zhiyu</creatorcontrib><creatorcontrib>Feng, Ruihua</creatorcontrib><creatorcontrib>Jadlovska, Irena</creatorcontrib><creatorcontrib>Liu, Qingmin</creatorcontrib><title>Oscillation Criteria for Third-Order Nonlinear Neutral Dynamic Equations with Mixed Deviating Arguments on Time Scales</title><title>Mathematics (Basel)</title><addtitle>MATHEMATICS-BASEL</addtitle><description>Under a couple of canonical and mixed canonical-noncanonical conditions, we investigate the oscillation and asymptotic behavior of solutions to a class of third-order nonlinear neutral dynamic equations with mixed deviating arguments on time scales. By means of the double Riccati transformation and the inequality technique, new oscillation criteria are established, which improve and generalize related results in the literature. Several examples are given to illustrate the main results.</description><subject>double Riccati transformation</subject><subject>Mathematics</subject><subject>mixed canonical-noncanonical condition</subject><subject>mixed deviating argument</subject><subject>oscillation criterion</subject><subject>Physical Sciences</subject><subject>Science &amp; Technology</subject><subject>third-order neutral dynamic equation</subject><subject>time scale</subject><issn>2227-7390</issn><issn>2227-7390</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>DOA</sourceid><recordid>eNqNkU9P3DAQxSMEEgg48QV8Ryl2Jl4nRxRoQaLsocs5mtjjXaMkbm0vf749Zqkox85lRk9vfof3iuJM8G8ALb-YMG1aLrmU1V5xVFWVKlXW97_ch8VpjI88Tyugqduj4mkZtRtHTM7PrAsuUXDIrA9stXHBlMtgKLB7P49uJswXbVPAkV29zjg5za7_bHe_kT27tGE_3QsZdkVPLqvzml2G9XaiOUWW8Ss3EfulcaR4UhxYHCOd_t3HxcP361V3U94tf9x2l3elBlikUqmG17WGFmU9LKwSChptDbe1IKsVt8qiENxIa4UEMMNgGyLZaiOMaLGC4-L2g2s8Pva_g5swvPYeXb8TfFj3GJLTI_UDgTYtNwtAW4OoBqNBiGEAU0tDWGfW-QdLBx9jIPvJE7x_b6D_0sA_9zMN3uaQadb0-ZEbWFQNqEq-lyGyu_l_d-fSLvPOb-cEbxqsnF4</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Zhang, Zhiyu</creator><creator>Feng, Ruihua</creator><creator>Jadlovska, Irena</creator><creator>Liu, Qingmin</creator><general>Mdpi</general><general>MDPI AG</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4649-5611</orcidid></search><sort><creationdate>20210301</creationdate><title>Oscillation Criteria for Third-Order Nonlinear Neutral Dynamic Equations with Mixed Deviating Arguments on Time Scales</title><author>Zhang, Zhiyu ; Feng, Ruihua ; Jadlovska, Irena ; Liu, Qingmin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-778044c39a54b6f71738cfd0f41efc70f7fa110d5ff1533dbbf8ee59cd1d19a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>double Riccati transformation</topic><topic>Mathematics</topic><topic>mixed canonical-noncanonical condition</topic><topic>mixed deviating argument</topic><topic>oscillation criterion</topic><topic>Physical Sciences</topic><topic>Science &amp; Technology</topic><topic>third-order neutral dynamic equation</topic><topic>time scale</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Zhiyu</creatorcontrib><creatorcontrib>Feng, Ruihua</creatorcontrib><creatorcontrib>Jadlovska, Irena</creatorcontrib><creatorcontrib>Liu, Qingmin</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Mathematics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Zhiyu</au><au>Feng, Ruihua</au><au>Jadlovska, Irena</au><au>Liu, Qingmin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oscillation Criteria for Third-Order Nonlinear Neutral Dynamic Equations with Mixed Deviating Arguments on Time Scales</atitle><jtitle>Mathematics (Basel)</jtitle><stitle>MATHEMATICS-BASEL</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>9</volume><issue>5</issue><spage>552</spage><pages>552-</pages><artnum>552</artnum><issn>2227-7390</issn><eissn>2227-7390</eissn><abstract>Under a couple of canonical and mixed canonical-noncanonical conditions, we investigate the oscillation and asymptotic behavior of solutions to a class of third-order nonlinear neutral dynamic equations with mixed deviating arguments on time scales. By means of the double Riccati transformation and the inequality technique, new oscillation criteria are established, which improve and generalize related results in the literature. Several examples are given to illustrate the main results.</abstract><cop>BASEL</cop><pub>Mdpi</pub><doi>10.3390/math9050552</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-4649-5611</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2227-7390
ispartof Mathematics (Basel), 2021-03, Vol.9 (5), p.552, Article 552
issn 2227-7390
2227-7390
language eng
recordid cdi_crossref_primary_10_3390_math9050552
source MDPI - Multidisciplinary Digital Publishing Institute; DOAJ Directory of Open Access Journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals
subjects double Riccati transformation
Mathematics
mixed canonical-noncanonical condition
mixed deviating argument
oscillation criterion
Physical Sciences
Science & Technology
third-order neutral dynamic equation
time scale
title Oscillation Criteria for Third-Order Nonlinear Neutral Dynamic Equations with Mixed Deviating Arguments on Time Scales
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T13%3A44%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-webofscience_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oscillation%20Criteria%20for%20Third-Order%20Nonlinear%20Neutral%20Dynamic%20Equations%20with%20Mixed%20Deviating%20Arguments%20on%20Time%20Scales&rft.jtitle=Mathematics%20(Basel)&rft.au=Zhang,%20Zhiyu&rft.date=2021-03-01&rft.volume=9&rft.issue=5&rft.spage=552&rft.pages=552-&rft.artnum=552&rft.issn=2227-7390&rft.eissn=2227-7390&rft_id=info:doi/10.3390/math9050552&rft_dat=%3Cwebofscience_cross%3E000628372500001%3C/webofscience_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_be3cd90d63af4312bdc311bb3d45dea4&rfr_iscdi=true