Cavitation Model Calibration Using Machine Learning Assisted Workflow

Conventional cavitation assessment methodology in industrial and scientific applications generally depends on cavitation models utilizing homogeneous mixture assumption. These models have been extensively assessed, modified and expanded to account for deficiencies of their predecessors. Unfortunatel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2020-12, Vol.8 (12), p.2107, Article 2107
Hauptverfasser: Sikirica, Ante, Carija, Zoran, Lucin, Ivana, Grbcic, Luka, Kranjcevic, Lado
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page 2107
container_title Mathematics (Basel)
container_volume 8
creator Sikirica, Ante
Carija, Zoran
Lucin, Ivana
Grbcic, Luka
Kranjcevic, Lado
description Conventional cavitation assessment methodology in industrial and scientific applications generally depends on cavitation models utilizing homogeneous mixture assumption. These models have been extensively assessed, modified and expanded to account for deficiencies of their predecessors. Unfortunately, none of the proposed models can be classified as the universal solution for all engineering applications, with usage mainly directed by experience or general availability of the models. In this study we propose a workflow through which the empirical constants governing the phase change of the Kunz mixture cavitation model can be calibrated for a given application or a series of problems, with machine learning as a tool for parameter estimation. The proposed approach was validated on a three-dimensional propeller test case with results in excellent agreement for the case in question. Results for thrust and torque were within 2% with cavity extents differing by up to 20%. This is a significant improvement when compared to previously proposed parameters. Despite the lack of generalization due to the limited nature of the dataset on which the model was trained, the proposed parameters entail acceptable results for similar cases as well. The overall methodology is applicable to other problems as well and should lead to more accurate cavitation predictions.
doi_str_mv 10.3390/math8122107
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_3390_math8122107</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_de979b4d47eb4ff0b773927b54151a4f</doaj_id><sourcerecordid>2465299776</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-6495e74b38d6d5751af0da1603908a8bcf9defde31e0ae4f26738dc678a41fc33</originalsourceid><addsrcrecordid>eNqNkUtLAzEUhQdRsKgr_8CAS6nmNclkWYb6gIobxWXIJDdt6jipyVTx35s6oi7NJuFw7jmXL0VxitEFpRJdvuhhVWNCMBJ7xYQQIqYi6_t_3ofFSUprlI_EtGZyUswb_eYHPfjQl3fBQlc2uvNtHJXH5PtleafNyvdQLkDHfifMUvJpAFs-hfjsuvB-XBw43SU4-b6Piser-UNzM13cX982s8XUUM6GKWeyAsFaWltuK1Fh7ZDVmKO8Wq3r1jhpwVmgGJAG5ggX2Wq4qDXDzlB6VNyOuTbotdpE_6Ljhwraqy8hxKXScfCmA2VBCtkyywS0zDnUigyAiLZiOPcyl7POxqxNDK9bSINah23s8_qKMF4RKYXg2XU-ukwMKUVwP60YqR129Qd7dtej-x3a4JLx0Bv4mcjYOSKZvdj9AG6-uTdh2w-_Rf8ZpZ-0vZU6</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2465299776</pqid></control><display><type>article</type><title>Cavitation Model Calibration Using Machine Learning Assisted Workflow</title><source>DOAJ Directory of Open Access Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Sikirica, Ante ; Carija, Zoran ; Lucin, Ivana ; Grbcic, Luka ; Kranjcevic, Lado</creator><creatorcontrib>Sikirica, Ante ; Carija, Zoran ; Lucin, Ivana ; Grbcic, Luka ; Kranjcevic, Lado</creatorcontrib><description>Conventional cavitation assessment methodology in industrial and scientific applications generally depends on cavitation models utilizing homogeneous mixture assumption. These models have been extensively assessed, modified and expanded to account for deficiencies of their predecessors. Unfortunately, none of the proposed models can be classified as the universal solution for all engineering applications, with usage mainly directed by experience or general availability of the models. In this study we propose a workflow through which the empirical constants governing the phase change of the Kunz mixture cavitation model can be calibrated for a given application or a series of problems, with machine learning as a tool for parameter estimation. The proposed approach was validated on a three-dimensional propeller test case with results in excellent agreement for the case in question. Results for thrust and torque were within 2% with cavity extents differing by up to 20%. This is a significant improvement when compared to previously proposed parameters. Despite the lack of generalization due to the limited nature of the dataset on which the model was trained, the proposed parameters entail acceptable results for similar cases as well. The overall methodology is applicable to other problems as well and should lead to more accurate cavitation predictions.</description><identifier>ISSN: 2227-7390</identifier><identifier>EISSN: 2227-7390</identifier><identifier>DOI: 10.3390/math8122107</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>Calibration ; Cavitation ; cavitation modeling ; Geometry ; Homogeneous mixtures ; Kunz model ; Machine learning ; marine propeller ; Mathematical models ; Mathematics ; Optimization techniques ; Parameter estimation ; Physical Sciences ; random forest ; Science &amp; Technology ; Simulation ; Turbulence models ; Viscosity ; Workflow</subject><ispartof>Mathematics (Basel), 2020-12, Vol.8 (12), p.2107, Article 2107</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>7</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000602009700001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c364t-6495e74b38d6d5751af0da1603908a8bcf9defde31e0ae4f26738dc678a41fc33</citedby><cites>FETCH-LOGICAL-c364t-6495e74b38d6d5751af0da1603908a8bcf9defde31e0ae4f26738dc678a41fc33</cites><orcidid>0000-0001-7469-3135 ; 0000-0001-5481-119X ; 0000-0002-5839-3156 ; 0000-0003-0377-686X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,865,2103,2115,27929,27930,28253</link.rule.ids></links><search><creatorcontrib>Sikirica, Ante</creatorcontrib><creatorcontrib>Carija, Zoran</creatorcontrib><creatorcontrib>Lucin, Ivana</creatorcontrib><creatorcontrib>Grbcic, Luka</creatorcontrib><creatorcontrib>Kranjcevic, Lado</creatorcontrib><title>Cavitation Model Calibration Using Machine Learning Assisted Workflow</title><title>Mathematics (Basel)</title><addtitle>MATHEMATICS-BASEL</addtitle><description>Conventional cavitation assessment methodology in industrial and scientific applications generally depends on cavitation models utilizing homogeneous mixture assumption. These models have been extensively assessed, modified and expanded to account for deficiencies of their predecessors. Unfortunately, none of the proposed models can be classified as the universal solution for all engineering applications, with usage mainly directed by experience or general availability of the models. In this study we propose a workflow through which the empirical constants governing the phase change of the Kunz mixture cavitation model can be calibrated for a given application or a series of problems, with machine learning as a tool for parameter estimation. The proposed approach was validated on a three-dimensional propeller test case with results in excellent agreement for the case in question. Results for thrust and torque were within 2% with cavity extents differing by up to 20%. This is a significant improvement when compared to previously proposed parameters. Despite the lack of generalization due to the limited nature of the dataset on which the model was trained, the proposed parameters entail acceptable results for similar cases as well. The overall methodology is applicable to other problems as well and should lead to more accurate cavitation predictions.</description><subject>Calibration</subject><subject>Cavitation</subject><subject>cavitation modeling</subject><subject>Geometry</subject><subject>Homogeneous mixtures</subject><subject>Kunz model</subject><subject>Machine learning</subject><subject>marine propeller</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Optimization techniques</subject><subject>Parameter estimation</subject><subject>Physical Sciences</subject><subject>random forest</subject><subject>Science &amp; Technology</subject><subject>Simulation</subject><subject>Turbulence models</subject><subject>Viscosity</subject><subject>Workflow</subject><issn>2227-7390</issn><issn>2227-7390</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkUtLAzEUhQdRsKgr_8CAS6nmNclkWYb6gIobxWXIJDdt6jipyVTx35s6oi7NJuFw7jmXL0VxitEFpRJdvuhhVWNCMBJ7xYQQIqYi6_t_3ofFSUprlI_EtGZyUswb_eYHPfjQl3fBQlc2uvNtHJXH5PtleafNyvdQLkDHfifMUvJpAFs-hfjsuvB-XBw43SU4-b6Piser-UNzM13cX982s8XUUM6GKWeyAsFaWltuK1Fh7ZDVmKO8Wq3r1jhpwVmgGJAG5ggX2Wq4qDXDzlB6VNyOuTbotdpE_6Ljhwraqy8hxKXScfCmA2VBCtkyywS0zDnUigyAiLZiOPcyl7POxqxNDK9bSINah23s8_qKMF4RKYXg2XU-ukwMKUVwP60YqR129Qd7dtej-x3a4JLx0Bv4mcjYOSKZvdj9AG6-uTdh2w-_Rf8ZpZ-0vZU6</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Sikirica, Ante</creator><creator>Carija, Zoran</creator><creator>Lucin, Ivana</creator><creator>Grbcic, Luka</creator><creator>Kranjcevic, Lado</creator><general>Mdpi</general><general>MDPI AG</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7469-3135</orcidid><orcidid>https://orcid.org/0000-0001-5481-119X</orcidid><orcidid>https://orcid.org/0000-0002-5839-3156</orcidid><orcidid>https://orcid.org/0000-0003-0377-686X</orcidid></search><sort><creationdate>20201201</creationdate><title>Cavitation Model Calibration Using Machine Learning Assisted Workflow</title><author>Sikirica, Ante ; Carija, Zoran ; Lucin, Ivana ; Grbcic, Luka ; Kranjcevic, Lado</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-6495e74b38d6d5751af0da1603908a8bcf9defde31e0ae4f26738dc678a41fc33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Calibration</topic><topic>Cavitation</topic><topic>cavitation modeling</topic><topic>Geometry</topic><topic>Homogeneous mixtures</topic><topic>Kunz model</topic><topic>Machine learning</topic><topic>marine propeller</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Optimization techniques</topic><topic>Parameter estimation</topic><topic>Physical Sciences</topic><topic>random forest</topic><topic>Science &amp; Technology</topic><topic>Simulation</topic><topic>Turbulence models</topic><topic>Viscosity</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sikirica, Ante</creatorcontrib><creatorcontrib>Carija, Zoran</creatorcontrib><creatorcontrib>Lucin, Ivana</creatorcontrib><creatorcontrib>Grbcic, Luka</creatorcontrib><creatorcontrib>Kranjcevic, Lado</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Mathematics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sikirica, Ante</au><au>Carija, Zoran</au><au>Lucin, Ivana</au><au>Grbcic, Luka</au><au>Kranjcevic, Lado</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cavitation Model Calibration Using Machine Learning Assisted Workflow</atitle><jtitle>Mathematics (Basel)</jtitle><stitle>MATHEMATICS-BASEL</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>8</volume><issue>12</issue><spage>2107</spage><pages>2107-</pages><artnum>2107</artnum><issn>2227-7390</issn><eissn>2227-7390</eissn><abstract>Conventional cavitation assessment methodology in industrial and scientific applications generally depends on cavitation models utilizing homogeneous mixture assumption. These models have been extensively assessed, modified and expanded to account for deficiencies of their predecessors. Unfortunately, none of the proposed models can be classified as the universal solution for all engineering applications, with usage mainly directed by experience or general availability of the models. In this study we propose a workflow through which the empirical constants governing the phase change of the Kunz mixture cavitation model can be calibrated for a given application or a series of problems, with machine learning as a tool for parameter estimation. The proposed approach was validated on a three-dimensional propeller test case with results in excellent agreement for the case in question. Results for thrust and torque were within 2% with cavity extents differing by up to 20%. This is a significant improvement when compared to previously proposed parameters. Despite the lack of generalization due to the limited nature of the dataset on which the model was trained, the proposed parameters entail acceptable results for similar cases as well. The overall methodology is applicable to other problems as well and should lead to more accurate cavitation predictions.</abstract><cop>BASEL</cop><pub>Mdpi</pub><doi>10.3390/math8122107</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-7469-3135</orcidid><orcidid>https://orcid.org/0000-0001-5481-119X</orcidid><orcidid>https://orcid.org/0000-0002-5839-3156</orcidid><orcidid>https://orcid.org/0000-0003-0377-686X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2227-7390
ispartof Mathematics (Basel), 2020-12, Vol.8 (12), p.2107, Article 2107
issn 2227-7390
2227-7390
language eng
recordid cdi_crossref_primary_10_3390_math8122107
source DOAJ Directory of Open Access Journals; MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals
subjects Calibration
Cavitation
cavitation modeling
Geometry
Homogeneous mixtures
Kunz model
Machine learning
marine propeller
Mathematical models
Mathematics
Optimization techniques
Parameter estimation
Physical Sciences
random forest
Science & Technology
Simulation
Turbulence models
Viscosity
Workflow
title Cavitation Model Calibration Using Machine Learning Assisted Workflow
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T10%3A44%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cavitation%20Model%20Calibration%20Using%20Machine%20Learning%20Assisted%20Workflow&rft.jtitle=Mathematics%20(Basel)&rft.au=Sikirica,%20Ante&rft.date=2020-12-01&rft.volume=8&rft.issue=12&rft.spage=2107&rft.pages=2107-&rft.artnum=2107&rft.issn=2227-7390&rft.eissn=2227-7390&rft_id=info:doi/10.3390/math8122107&rft_dat=%3Cproquest_cross%3E2465299776%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2465299776&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_de979b4d47eb4ff0b773927b54151a4f&rfr_iscdi=true