The Clinical Influence after Implementation of Convolutional Neural Network-Based Software for Diabetic Retinopathy Detection in the Primary Care Setting

Deep learning-based software is developed to assist physicians in terms of diagnosis; however, its clinical application is still under investigation. We integrated deep-learning-based software for diabetic retinopathy (DR) grading into the clinical workflow of an endocrinology department where endoc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Life (Basel, Switzerland) Switzerland), 2021-03, Vol.11 (3), p.200
Hauptverfasser: Li, Yu-Hsuan, Sheu, Wayne Huey-Herng, Chou, Chien-Chih, Lin, Chun-Hsien, Cheng, Yuan-Shao, Wang, Chun-Yuan, Wu, Chieh Liang, Lee, I-Te
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 200
container_title Life (Basel, Switzerland)
container_volume 11
creator Li, Yu-Hsuan
Sheu, Wayne Huey-Herng
Chou, Chien-Chih
Lin, Chun-Hsien
Cheng, Yuan-Shao
Wang, Chun-Yuan
Wu, Chieh Liang
Lee, I-Te
description Deep learning-based software is developed to assist physicians in terms of diagnosis; however, its clinical application is still under investigation. We integrated deep-learning-based software for diabetic retinopathy (DR) grading into the clinical workflow of an endocrinology department where endocrinologists grade for retinal images and evaluated the influence of its implementation. A total of 1432 images from 716 patients and 1400 images from 700 patients were collected before and after implementation, respectively. Using the grading by ophthalmologists as the reference standard, the sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) to detect referable DR (RDR) were 0.91 (0.87-0.96), 0.90 (0.87-0.92), and 0.90 (0.87-0.93) at the image level; and 0.91 (0.81-0.97), 0.84 (0.80-0.87), and 0.87 (0.83-0.91) at the patient level. The monthly RDR rate dropped from 55.1% to 43.0% after implementation. The monthly percentage of finishing grading within the allotted time increased from 66.8% to 77.6%. There was a wide range of agreement values between the software and endocrinologists after implementation (kappa values of 0.17-0.65). In conclusion, we observed the clinical influence of deep-learning-based software on graders without the retinal subspecialty. However, the validation using images from local datasets is recommended before clinical implementation.
doi_str_mv 10.3390/life11030200
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_crossref_primary_10_3390_life11030200</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_70bbfd720846480a92a827634889ebf9</doaj_id><sourcerecordid>2499643268</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-978eb9fc7b8759597d44f1a80ad91aec6020b89f322094a119c170c8d60c94d73</originalsourceid><addsrcrecordid>eNpdklFvFCEQxzdGY5vaN58NiS8-uAoLu8CLiW61XtKosfWZsOxwx8ktJ8u26Ufx25a9q81VHhhgfvyZGaYoXhL8jlKJ33tngRBMcYXxk-K4wrwuCa_k04P1UXE6jmucR1OTRrDnxRGlIntZfVz8vVoBar0bnNEeLQbrJxgMIG0TRLTYbD1sYEg6uTCgYFEbhuvgp3mb-W8wxZ1JNyH-Lj_pEXp0GWy60RGQDRGdOd1Bcgb9zPMQtjqtbtEZJDA7RTeglAP4Ed1Gx1vUztcuIWV0-aJ4ZrUf4fTenhS_vny-ar-WF9_PF-3Hi9IwWqdScgGdtIZ3gteylrxnzBItsO4l0WCaXJpOSEurCkumCZGGcGxE32AjWc_pSbHY6_ZBr9V2H4kK2qndQYhLpWPOwIPiuOtszyssWMPyC7LSouINZUJI6KzMWh_2Wtup20BvcuVyfR6JPvYMbqWW4VoJTOumnoN5cy8Qw58JxqQ2bjTgvR4gTKOqaixqzhgXGX39H7oOU8y_kikmZcNo1czU2z1lYhjHCPYhGILV3ELqsIUy_uowgQf4X8PQO9pHw1c</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2499643268</pqid></control><display><type>article</type><title>The Clinical Influence after Implementation of Convolutional Neural Network-Based Software for Diabetic Retinopathy Detection in the Primary Care Setting</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><source>Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><source>PubMed Central Open Access</source><creator>Li, Yu-Hsuan ; Sheu, Wayne Huey-Herng ; Chou, Chien-Chih ; Lin, Chun-Hsien ; Cheng, Yuan-Shao ; Wang, Chun-Yuan ; Wu, Chieh Liang ; Lee, I-Te</creator><creatorcontrib>Li, Yu-Hsuan ; Sheu, Wayne Huey-Herng ; Chou, Chien-Chih ; Lin, Chun-Hsien ; Cheng, Yuan-Shao ; Wang, Chun-Yuan ; Wu, Chieh Liang ; Lee, I-Te</creatorcontrib><description>Deep learning-based software is developed to assist physicians in terms of diagnosis; however, its clinical application is still under investigation. We integrated deep-learning-based software for diabetic retinopathy (DR) grading into the clinical workflow of an endocrinology department where endocrinologists grade for retinal images and evaluated the influence of its implementation. A total of 1432 images from 716 patients and 1400 images from 700 patients were collected before and after implementation, respectively. Using the grading by ophthalmologists as the reference standard, the sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) to detect referable DR (RDR) were 0.91 (0.87-0.96), 0.90 (0.87-0.92), and 0.90 (0.87-0.93) at the image level; and 0.91 (0.81-0.97), 0.84 (0.80-0.87), and 0.87 (0.83-0.91) at the patient level. The monthly RDR rate dropped from 55.1% to 43.0% after implementation. The monthly percentage of finishing grading within the allotted time increased from 66.8% to 77.6%. There was a wide range of agreement values between the software and endocrinologists after implementation (kappa values of 0.17-0.65). In conclusion, we observed the clinical influence of deep-learning-based software on graders without the retinal subspecialty. However, the validation using images from local datasets is recommended before clinical implementation.</description><identifier>ISSN: 2075-1729</identifier><identifier>EISSN: 2075-1729</identifier><identifier>DOI: 10.3390/life11030200</identifier><identifier>PMID: 33807545</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Accuracy ; Algorithms ; area under the curve ; Artificial neural networks ; Computer programs ; Deep learning ; Diabetes ; Diabetes mellitus ; Diabetic retinopathy ; Endocrinology ; Health care ; Medical imaging ; Medical personnel ; Neural networks ; Patients ; Physicians ; Retina ; Retinal images ; Retinopathy ; Software ; Workflow</subject><ispartof>Life (Basel, Switzerland), 2021-03, Vol.11 (3), p.200</ispartof><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c435t-978eb9fc7b8759597d44f1a80ad91aec6020b89f322094a119c170c8d60c94d73</cites><orcidid>0000-0002-0717-9678 ; 0000-0003-2665-3635</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8035657/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8035657/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,27926,27927,53793,53795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33807545$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Yu-Hsuan</creatorcontrib><creatorcontrib>Sheu, Wayne Huey-Herng</creatorcontrib><creatorcontrib>Chou, Chien-Chih</creatorcontrib><creatorcontrib>Lin, Chun-Hsien</creatorcontrib><creatorcontrib>Cheng, Yuan-Shao</creatorcontrib><creatorcontrib>Wang, Chun-Yuan</creatorcontrib><creatorcontrib>Wu, Chieh Liang</creatorcontrib><creatorcontrib>Lee, I-Te</creatorcontrib><title>The Clinical Influence after Implementation of Convolutional Neural Network-Based Software for Diabetic Retinopathy Detection in the Primary Care Setting</title><title>Life (Basel, Switzerland)</title><addtitle>Life (Basel)</addtitle><description>Deep learning-based software is developed to assist physicians in terms of diagnosis; however, its clinical application is still under investigation. We integrated deep-learning-based software for diabetic retinopathy (DR) grading into the clinical workflow of an endocrinology department where endocrinologists grade for retinal images and evaluated the influence of its implementation. A total of 1432 images from 716 patients and 1400 images from 700 patients were collected before and after implementation, respectively. Using the grading by ophthalmologists as the reference standard, the sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) to detect referable DR (RDR) were 0.91 (0.87-0.96), 0.90 (0.87-0.92), and 0.90 (0.87-0.93) at the image level; and 0.91 (0.81-0.97), 0.84 (0.80-0.87), and 0.87 (0.83-0.91) at the patient level. The monthly RDR rate dropped from 55.1% to 43.0% after implementation. The monthly percentage of finishing grading within the allotted time increased from 66.8% to 77.6%. There was a wide range of agreement values between the software and endocrinologists after implementation (kappa values of 0.17-0.65). In conclusion, we observed the clinical influence of deep-learning-based software on graders without the retinal subspecialty. However, the validation using images from local datasets is recommended before clinical implementation.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>area under the curve</subject><subject>Artificial neural networks</subject><subject>Computer programs</subject><subject>Deep learning</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Diabetic retinopathy</subject><subject>Endocrinology</subject><subject>Health care</subject><subject>Medical imaging</subject><subject>Medical personnel</subject><subject>Neural networks</subject><subject>Patients</subject><subject>Physicians</subject><subject>Retina</subject><subject>Retinal images</subject><subject>Retinopathy</subject><subject>Software</subject><subject>Workflow</subject><issn>2075-1729</issn><issn>2075-1729</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNpdklFvFCEQxzdGY5vaN58NiS8-uAoLu8CLiW61XtKosfWZsOxwx8ktJ8u26Ufx25a9q81VHhhgfvyZGaYoXhL8jlKJ33tngRBMcYXxk-K4wrwuCa_k04P1UXE6jmucR1OTRrDnxRGlIntZfVz8vVoBar0bnNEeLQbrJxgMIG0TRLTYbD1sYEg6uTCgYFEbhuvgp3mb-W8wxZ1JNyH-Lj_pEXp0GWy60RGQDRGdOd1Bcgb9zPMQtjqtbtEZJDA7RTeglAP4Ed1Gx1vUztcuIWV0-aJ4ZrUf4fTenhS_vny-ar-WF9_PF-3Hi9IwWqdScgGdtIZ3gteylrxnzBItsO4l0WCaXJpOSEurCkumCZGGcGxE32AjWc_pSbHY6_ZBr9V2H4kK2qndQYhLpWPOwIPiuOtszyssWMPyC7LSouINZUJI6KzMWh_2Wtup20BvcuVyfR6JPvYMbqWW4VoJTOumnoN5cy8Qw58JxqQ2bjTgvR4gTKOqaixqzhgXGX39H7oOU8y_kikmZcNo1czU2z1lYhjHCPYhGILV3ELqsIUy_uowgQf4X8PQO9pHw1c</recordid><startdate>20210305</startdate><enddate>20210305</enddate><creator>Li, Yu-Hsuan</creator><creator>Sheu, Wayne Huey-Herng</creator><creator>Chou, Chien-Chih</creator><creator>Lin, Chun-Hsien</creator><creator>Cheng, Yuan-Shao</creator><creator>Wang, Chun-Yuan</creator><creator>Wu, Chieh Liang</creator><creator>Lee, I-Te</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0717-9678</orcidid><orcidid>https://orcid.org/0000-0003-2665-3635</orcidid></search><sort><creationdate>20210305</creationdate><title>The Clinical Influence after Implementation of Convolutional Neural Network-Based Software for Diabetic Retinopathy Detection in the Primary Care Setting</title><author>Li, Yu-Hsuan ; Sheu, Wayne Huey-Herng ; Chou, Chien-Chih ; Lin, Chun-Hsien ; Cheng, Yuan-Shao ; Wang, Chun-Yuan ; Wu, Chieh Liang ; Lee, I-Te</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-978eb9fc7b8759597d44f1a80ad91aec6020b89f322094a119c170c8d60c94d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>area under the curve</topic><topic>Artificial neural networks</topic><topic>Computer programs</topic><topic>Deep learning</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Diabetic retinopathy</topic><topic>Endocrinology</topic><topic>Health care</topic><topic>Medical imaging</topic><topic>Medical personnel</topic><topic>Neural networks</topic><topic>Patients</topic><topic>Physicians</topic><topic>Retina</topic><topic>Retinal images</topic><topic>Retinopathy</topic><topic>Software</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yu-Hsuan</creatorcontrib><creatorcontrib>Sheu, Wayne Huey-Herng</creatorcontrib><creatorcontrib>Chou, Chien-Chih</creatorcontrib><creatorcontrib>Lin, Chun-Hsien</creatorcontrib><creatorcontrib>Cheng, Yuan-Shao</creatorcontrib><creatorcontrib>Wang, Chun-Yuan</creatorcontrib><creatorcontrib>Wu, Chieh Liang</creatorcontrib><creatorcontrib>Lee, I-Te</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Life (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yu-Hsuan</au><au>Sheu, Wayne Huey-Herng</au><au>Chou, Chien-Chih</au><au>Lin, Chun-Hsien</au><au>Cheng, Yuan-Shao</au><au>Wang, Chun-Yuan</au><au>Wu, Chieh Liang</au><au>Lee, I-Te</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Clinical Influence after Implementation of Convolutional Neural Network-Based Software for Diabetic Retinopathy Detection in the Primary Care Setting</atitle><jtitle>Life (Basel, Switzerland)</jtitle><addtitle>Life (Basel)</addtitle><date>2021-03-05</date><risdate>2021</risdate><volume>11</volume><issue>3</issue><spage>200</spage><pages>200-</pages><issn>2075-1729</issn><eissn>2075-1729</eissn><abstract>Deep learning-based software is developed to assist physicians in terms of diagnosis; however, its clinical application is still under investigation. We integrated deep-learning-based software for diabetic retinopathy (DR) grading into the clinical workflow of an endocrinology department where endocrinologists grade for retinal images and evaluated the influence of its implementation. A total of 1432 images from 716 patients and 1400 images from 700 patients were collected before and after implementation, respectively. Using the grading by ophthalmologists as the reference standard, the sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) to detect referable DR (RDR) were 0.91 (0.87-0.96), 0.90 (0.87-0.92), and 0.90 (0.87-0.93) at the image level; and 0.91 (0.81-0.97), 0.84 (0.80-0.87), and 0.87 (0.83-0.91) at the patient level. The monthly RDR rate dropped from 55.1% to 43.0% after implementation. The monthly percentage of finishing grading within the allotted time increased from 66.8% to 77.6%. There was a wide range of agreement values between the software and endocrinologists after implementation (kappa values of 0.17-0.65). In conclusion, we observed the clinical influence of deep-learning-based software on graders without the retinal subspecialty. However, the validation using images from local datasets is recommended before clinical implementation.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>33807545</pmid><doi>10.3390/life11030200</doi><orcidid>https://orcid.org/0000-0002-0717-9678</orcidid><orcidid>https://orcid.org/0000-0003-2665-3635</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2075-1729
ispartof Life (Basel, Switzerland), 2021-03, Vol.11 (3), p.200
issn 2075-1729
2075-1729
language eng
recordid cdi_crossref_primary_10_3390_life11030200
source MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central; Directory of Open Access Journals; EZB Electronic Journals Library; PubMed Central Open Access
subjects Accuracy
Algorithms
area under the curve
Artificial neural networks
Computer programs
Deep learning
Diabetes
Diabetes mellitus
Diabetic retinopathy
Endocrinology
Health care
Medical imaging
Medical personnel
Neural networks
Patients
Physicians
Retina
Retinal images
Retinopathy
Software
Workflow
title The Clinical Influence after Implementation of Convolutional Neural Network-Based Software for Diabetic Retinopathy Detection in the Primary Care Setting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T22%3A52%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Clinical%20Influence%20after%20Implementation%20of%20Convolutional%20Neural%20Network-Based%20Software%20for%20Diabetic%20Retinopathy%20Detection%20in%20the%20Primary%20Care%20Setting&rft.jtitle=Life%20(Basel,%20Switzerland)&rft.au=Li,%20Yu-Hsuan&rft.date=2021-03-05&rft.volume=11&rft.issue=3&rft.spage=200&rft.pages=200-&rft.issn=2075-1729&rft.eissn=2075-1729&rft_id=info:doi/10.3390/life11030200&rft_dat=%3Cproquest_doaj_%3E2499643268%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2499643268&rft_id=info:pmid/33807545&rft_doaj_id=oai_doaj_org_article_70bbfd720846480a92a827634889ebf9&rfr_iscdi=true