Integrated Transcriptomic and Proteomic Analyses Reveal Molecular Mechanism of Response to Heat Shock in Morchella sextelata
Morels ( spp.), as one of the rare macroascomycetes that can be cultivated artificially, possess significant economic and scientific values. Morel cultivation is highly sensitive to elevated temperatures; however, the mechanisms of their response to heat shock remain poorly understood. This study in...
Gespeichert in:
Veröffentlicht in: | Journal of fungi (Basel) 2025-01, Vol.11 (1), p.76 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 76 |
container_title | Journal of fungi (Basel) |
container_volume | 11 |
creator | Zhang, Jiexiong Li, Yanxia Mao, Yifan Zhang, Yesheng Zhou, Botong Liu, Wei Wang, Wen Zhang, Chen |
description | Morels (
spp.), as one of the rare macroascomycetes that can be cultivated artificially, possess significant economic and scientific values. Morel cultivation is highly sensitive to elevated temperatures; however, the mechanisms of their response to heat shock remain poorly understood. This study integrated transcriptomic and quantitative proteomic analyses of two
strains with different thermotolerance (labeled as strains C and D) under normal (18 °C) and high temperature (28 °C) conditions. From over 9300 transcripts and 5000 proteins, both consistency and heterogeneity were found in response to heat shock between the two strains. Both strains displayed a capacity to maintain cellular homeostasis in response to heat shock through highly expressed cell wall integrity (CWI) pathways, heat shock proteins (HSPs), and antioxidant systems. However, strain D, which exhibited stronger thermotolerance, specifically upregulated the ubiquitin ligase
, thereby further promoting the expression of HSPs, which may be a key factor influencing the thermotolerance difference among
strains. A conceptual model of the heat shock adaptation regulatory network in
was proposed for the first time; the results provide novel insights into the thermotolerance response mechanisms of macroascomycetes and valuable resources for the breeding enhancement of thermotolerant morel strains. |
doi_str_mv | 10.3390/jof11010076 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_crossref_primary_10_3390_jof11010076</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_45383c8f555c455bb5119bc6cac94f67</doaj_id><sourcerecordid>3159688130</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2796-9d24dab3e71fda4d25c7b9d9308623c859867b9a9a6f077a361df63e006092fb3</originalsourceid><addsrcrecordid>eNpdks9rFDEUxwdRbKk9eZeAF0FWk8kkMzlJKWoXWhSt4C28SV52Z51JtkmmWPCPN-3WsvWU5L1PPuTHt6peMvqOc0Xfb4JjjDJKW_mkOqw5VQtJu59P9-YH1XFKG0opE51Uij-vDrjqRN0oeVj9WfqMqwgZLbmM4JOJwzaHaTAEvCVfY8h4tzrxMN4kTOQbXiOM5CKMaOYRIrlAswY_pIkEV7ppG3xCkgM5Q8jk-zqYX2TwZUM0axxHIAl_Zxwhw4vqmYMx4fH9eFT9-PTx8vRscf7l8_L05Hxh6lbJhbJ1Y6Hn2DJnobG1MG2vrOK0kzU3nVCdLAVQIB1tW-CSWSc5Uiqpql3Pj6rlzmsDbPQ2DhPEGx1g0HeFEFcaYh7MiLoRvCtKJ4QwjRB9LxhTvZEGjGqcbIvrw861nfsJrUGfI4yPpI87fljrVbjWjLVSCl4Xw5t7QwxXM6aspyGZ25fxGOakORNKdh3jtKCv_0M3YY7lJ3aUYA3jqlBvd5SJIaWI7uE0jOrblOi9lBT61f4FHth_meB_AdYxuPM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3159514139</pqid></control><display><type>article</type><title>Integrated Transcriptomic and Proteomic Analyses Reveal Molecular Mechanism of Response to Heat Shock in Morchella sextelata</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Zhang, Jiexiong ; Li, Yanxia ; Mao, Yifan ; Zhang, Yesheng ; Zhou, Botong ; Liu, Wei ; Wang, Wen ; Zhang, Chen</creator><creatorcontrib>Zhang, Jiexiong ; Li, Yanxia ; Mao, Yifan ; Zhang, Yesheng ; Zhou, Botong ; Liu, Wei ; Wang, Wen ; Zhang, Chen</creatorcontrib><description>Morels (
spp.), as one of the rare macroascomycetes that can be cultivated artificially, possess significant economic and scientific values. Morel cultivation is highly sensitive to elevated temperatures; however, the mechanisms of their response to heat shock remain poorly understood. This study integrated transcriptomic and quantitative proteomic analyses of two
strains with different thermotolerance (labeled as strains C and D) under normal (18 °C) and high temperature (28 °C) conditions. From over 9300 transcripts and 5000 proteins, both consistency and heterogeneity were found in response to heat shock between the two strains. Both strains displayed a capacity to maintain cellular homeostasis in response to heat shock through highly expressed cell wall integrity (CWI) pathways, heat shock proteins (HSPs), and antioxidant systems. However, strain D, which exhibited stronger thermotolerance, specifically upregulated the ubiquitin ligase
, thereby further promoting the expression of HSPs, which may be a key factor influencing the thermotolerance difference among
strains. A conceptual model of the heat shock adaptation regulatory network in
was proposed for the first time; the results provide novel insights into the thermotolerance response mechanisms of macroascomycetes and valuable resources for the breeding enhancement of thermotolerant morel strains.</description><identifier>ISSN: 2309-608X</identifier><identifier>EISSN: 2309-608X</identifier><identifier>DOI: 10.3390/jof11010076</identifier><identifier>PMID: 39852496</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Adaptation ; antioxidant ; Cell walls ; CWI ; Global warming ; Greenhouses ; Heat ; Heat shock factors ; Heat shock proteins ; High temperature ; Homeostasis ; HSPs ; Molecular modelling ; Morchella sextelata ; Mushrooms ; Proteomics ; Reactive oxygen species ; ribosome ; Temperature ; Temperature tolerance ; thermotolerance ; Transcriptomics ; Ubiquitin-protein ligase</subject><ispartof>Journal of fungi (Basel), 2025-01, Vol.11 (1), p.76</ispartof><rights>2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2025 by the authors. 2025</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2796-9d24dab3e71fda4d25c7b9d9308623c859867b9a9a6f077a361df63e006092fb3</cites><orcidid>0000-0001-7586-7117 ; 0000-0002-1091-5867 ; 0000-0002-7801-2066 ; 0009-0002-2461-0607 ; 0000-0002-5733-7574</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11766532/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11766532/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39852496$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Jiexiong</creatorcontrib><creatorcontrib>Li, Yanxia</creatorcontrib><creatorcontrib>Mao, Yifan</creatorcontrib><creatorcontrib>Zhang, Yesheng</creatorcontrib><creatorcontrib>Zhou, Botong</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Wang, Wen</creatorcontrib><creatorcontrib>Zhang, Chen</creatorcontrib><title>Integrated Transcriptomic and Proteomic Analyses Reveal Molecular Mechanism of Response to Heat Shock in Morchella sextelata</title><title>Journal of fungi (Basel)</title><addtitle>J Fungi (Basel)</addtitle><description>Morels (
spp.), as one of the rare macroascomycetes that can be cultivated artificially, possess significant economic and scientific values. Morel cultivation is highly sensitive to elevated temperatures; however, the mechanisms of their response to heat shock remain poorly understood. This study integrated transcriptomic and quantitative proteomic analyses of two
strains with different thermotolerance (labeled as strains C and D) under normal (18 °C) and high temperature (28 °C) conditions. From over 9300 transcripts and 5000 proteins, both consistency and heterogeneity were found in response to heat shock between the two strains. Both strains displayed a capacity to maintain cellular homeostasis in response to heat shock through highly expressed cell wall integrity (CWI) pathways, heat shock proteins (HSPs), and antioxidant systems. However, strain D, which exhibited stronger thermotolerance, specifically upregulated the ubiquitin ligase
, thereby further promoting the expression of HSPs, which may be a key factor influencing the thermotolerance difference among
strains. A conceptual model of the heat shock adaptation regulatory network in
was proposed for the first time; the results provide novel insights into the thermotolerance response mechanisms of macroascomycetes and valuable resources for the breeding enhancement of thermotolerant morel strains.</description><subject>Adaptation</subject><subject>antioxidant</subject><subject>Cell walls</subject><subject>CWI</subject><subject>Global warming</subject><subject>Greenhouses</subject><subject>Heat</subject><subject>Heat shock factors</subject><subject>Heat shock proteins</subject><subject>High temperature</subject><subject>Homeostasis</subject><subject>HSPs</subject><subject>Molecular modelling</subject><subject>Morchella sextelata</subject><subject>Mushrooms</subject><subject>Proteomics</subject><subject>Reactive oxygen species</subject><subject>ribosome</subject><subject>Temperature</subject><subject>Temperature tolerance</subject><subject>thermotolerance</subject><subject>Transcriptomics</subject><subject>Ubiquitin-protein ligase</subject><issn>2309-608X</issn><issn>2309-608X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNpdks9rFDEUxwdRbKk9eZeAF0FWk8kkMzlJKWoXWhSt4C28SV52Z51JtkmmWPCPN-3WsvWU5L1PPuTHt6peMvqOc0Xfb4JjjDJKW_mkOqw5VQtJu59P9-YH1XFKG0opE51Uij-vDrjqRN0oeVj9WfqMqwgZLbmM4JOJwzaHaTAEvCVfY8h4tzrxMN4kTOQbXiOM5CKMaOYRIrlAswY_pIkEV7ppG3xCkgM5Q8jk-zqYX2TwZUM0axxHIAl_Zxwhw4vqmYMx4fH9eFT9-PTx8vRscf7l8_L05Hxh6lbJhbJ1Y6Hn2DJnobG1MG2vrOK0kzU3nVCdLAVQIB1tW-CSWSc5Uiqpql3Pj6rlzmsDbPQ2DhPEGx1g0HeFEFcaYh7MiLoRvCtKJ4QwjRB9LxhTvZEGjGqcbIvrw861nfsJrUGfI4yPpI87fljrVbjWjLVSCl4Xw5t7QwxXM6aspyGZ25fxGOakORNKdh3jtKCv_0M3YY7lJ3aUYA3jqlBvd5SJIaWI7uE0jOrblOi9lBT61f4FHth_meB_AdYxuPM</recordid><startdate>20250118</startdate><enddate>20250118</enddate><creator>Zhang, Jiexiong</creator><creator>Li, Yanxia</creator><creator>Mao, Yifan</creator><creator>Zhang, Yesheng</creator><creator>Zhou, Botong</creator><creator>Liu, Wei</creator><creator>Wang, Wen</creator><creator>Zhang, Chen</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7586-7117</orcidid><orcidid>https://orcid.org/0000-0002-1091-5867</orcidid><orcidid>https://orcid.org/0000-0002-7801-2066</orcidid><orcidid>https://orcid.org/0009-0002-2461-0607</orcidid><orcidid>https://orcid.org/0000-0002-5733-7574</orcidid></search><sort><creationdate>20250118</creationdate><title>Integrated Transcriptomic and Proteomic Analyses Reveal Molecular Mechanism of Response to Heat Shock in Morchella sextelata</title><author>Zhang, Jiexiong ; Li, Yanxia ; Mao, Yifan ; Zhang, Yesheng ; Zhou, Botong ; Liu, Wei ; Wang, Wen ; Zhang, Chen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2796-9d24dab3e71fda4d25c7b9d9308623c859867b9a9a6f077a361df63e006092fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Adaptation</topic><topic>antioxidant</topic><topic>Cell walls</topic><topic>CWI</topic><topic>Global warming</topic><topic>Greenhouses</topic><topic>Heat</topic><topic>Heat shock factors</topic><topic>Heat shock proteins</topic><topic>High temperature</topic><topic>Homeostasis</topic><topic>HSPs</topic><topic>Molecular modelling</topic><topic>Morchella sextelata</topic><topic>Mushrooms</topic><topic>Proteomics</topic><topic>Reactive oxygen species</topic><topic>ribosome</topic><topic>Temperature</topic><topic>Temperature tolerance</topic><topic>thermotolerance</topic><topic>Transcriptomics</topic><topic>Ubiquitin-protein ligase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jiexiong</creatorcontrib><creatorcontrib>Li, Yanxia</creatorcontrib><creatorcontrib>Mao, Yifan</creatorcontrib><creatorcontrib>Zhang, Yesheng</creatorcontrib><creatorcontrib>Zhou, Botong</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Wang, Wen</creatorcontrib><creatorcontrib>Zhang, Chen</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of fungi (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jiexiong</au><au>Li, Yanxia</au><au>Mao, Yifan</au><au>Zhang, Yesheng</au><au>Zhou, Botong</au><au>Liu, Wei</au><au>Wang, Wen</au><au>Zhang, Chen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrated Transcriptomic and Proteomic Analyses Reveal Molecular Mechanism of Response to Heat Shock in Morchella sextelata</atitle><jtitle>Journal of fungi (Basel)</jtitle><addtitle>J Fungi (Basel)</addtitle><date>2025-01-18</date><risdate>2025</risdate><volume>11</volume><issue>1</issue><spage>76</spage><pages>76-</pages><issn>2309-608X</issn><eissn>2309-608X</eissn><abstract>Morels (
spp.), as one of the rare macroascomycetes that can be cultivated artificially, possess significant economic and scientific values. Morel cultivation is highly sensitive to elevated temperatures; however, the mechanisms of their response to heat shock remain poorly understood. This study integrated transcriptomic and quantitative proteomic analyses of two
strains with different thermotolerance (labeled as strains C and D) under normal (18 °C) and high temperature (28 °C) conditions. From over 9300 transcripts and 5000 proteins, both consistency and heterogeneity were found in response to heat shock between the two strains. Both strains displayed a capacity to maintain cellular homeostasis in response to heat shock through highly expressed cell wall integrity (CWI) pathways, heat shock proteins (HSPs), and antioxidant systems. However, strain D, which exhibited stronger thermotolerance, specifically upregulated the ubiquitin ligase
, thereby further promoting the expression of HSPs, which may be a key factor influencing the thermotolerance difference among
strains. A conceptual model of the heat shock adaptation regulatory network in
was proposed for the first time; the results provide novel insights into the thermotolerance response mechanisms of macroascomycetes and valuable resources for the breeding enhancement of thermotolerant morel strains.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39852496</pmid><doi>10.3390/jof11010076</doi><orcidid>https://orcid.org/0000-0001-7586-7117</orcidid><orcidid>https://orcid.org/0000-0002-1091-5867</orcidid><orcidid>https://orcid.org/0000-0002-7801-2066</orcidid><orcidid>https://orcid.org/0009-0002-2461-0607</orcidid><orcidid>https://orcid.org/0000-0002-5733-7574</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2309-608X |
ispartof | Journal of fungi (Basel), 2025-01, Vol.11 (1), p.76 |
issn | 2309-608X 2309-608X |
language | eng |
recordid | cdi_crossref_primary_10_3390_jof11010076 |
source | MDPI - Multidisciplinary Digital Publishing Institute; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access |
subjects | Adaptation antioxidant Cell walls CWI Global warming Greenhouses Heat Heat shock factors Heat shock proteins High temperature Homeostasis HSPs Molecular modelling Morchella sextelata Mushrooms Proteomics Reactive oxygen species ribosome Temperature Temperature tolerance thermotolerance Transcriptomics Ubiquitin-protein ligase |
title | Integrated Transcriptomic and Proteomic Analyses Reveal Molecular Mechanism of Response to Heat Shock in Morchella sextelata |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T04%3A03%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrated%20Transcriptomic%20and%20Proteomic%20Analyses%20Reveal%20Molecular%20Mechanism%20of%20Response%20to%20Heat%20Shock%20in%20Morchella%20sextelata&rft.jtitle=Journal%20of%20fungi%20(Basel)&rft.au=Zhang,%20Jiexiong&rft.date=2025-01-18&rft.volume=11&rft.issue=1&rft.spage=76&rft.pages=76-&rft.issn=2309-608X&rft.eissn=2309-608X&rft_id=info:doi/10.3390/jof11010076&rft_dat=%3Cproquest_doaj_%3E3159688130%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3159514139&rft_id=info:pmid/39852496&rft_doaj_id=oai_doaj_org_article_45383c8f555c455bb5119bc6cac94f67&rfr_iscdi=true |