Integrated Transcriptomic and Proteomic Analyses Reveal Molecular Mechanism of Response to Heat Shock in Morchella sextelata

Morels ( spp.), as one of the rare macroascomycetes that can be cultivated artificially, possess significant economic and scientific values. Morel cultivation is highly sensitive to elevated temperatures; however, the mechanisms of their response to heat shock remain poorly understood. This study in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fungi (Basel) 2025-01, Vol.11 (1), p.76
Hauptverfasser: Zhang, Jiexiong, Li, Yanxia, Mao, Yifan, Zhang, Yesheng, Zhou, Botong, Liu, Wei, Wang, Wen, Zhang, Chen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 76
container_title Journal of fungi (Basel)
container_volume 11
creator Zhang, Jiexiong
Li, Yanxia
Mao, Yifan
Zhang, Yesheng
Zhou, Botong
Liu, Wei
Wang, Wen
Zhang, Chen
description Morels ( spp.), as one of the rare macroascomycetes that can be cultivated artificially, possess significant economic and scientific values. Morel cultivation is highly sensitive to elevated temperatures; however, the mechanisms of their response to heat shock remain poorly understood. This study integrated transcriptomic and quantitative proteomic analyses of two strains with different thermotolerance (labeled as strains C and D) under normal (18 °C) and high temperature (28 °C) conditions. From over 9300 transcripts and 5000 proteins, both consistency and heterogeneity were found in response to heat shock between the two strains. Both strains displayed a capacity to maintain cellular homeostasis in response to heat shock through highly expressed cell wall integrity (CWI) pathways, heat shock proteins (HSPs), and antioxidant systems. However, strain D, which exhibited stronger thermotolerance, specifically upregulated the ubiquitin ligase , thereby further promoting the expression of HSPs, which may be a key factor influencing the thermotolerance difference among strains. A conceptual model of the heat shock adaptation regulatory network in was proposed for the first time; the results provide novel insights into the thermotolerance response mechanisms of macroascomycetes and valuable resources for the breeding enhancement of thermotolerant morel strains.
doi_str_mv 10.3390/jof11010076
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_crossref_primary_10_3390_jof11010076</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_45383c8f555c455bb5119bc6cac94f67</doaj_id><sourcerecordid>3159688130</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2796-9d24dab3e71fda4d25c7b9d9308623c859867b9a9a6f077a361df63e006092fb3</originalsourceid><addsrcrecordid>eNpdks9rFDEUxwdRbKk9eZeAF0FWk8kkMzlJKWoXWhSt4C28SV52Z51JtkmmWPCPN-3WsvWU5L1PPuTHt6peMvqOc0Xfb4JjjDJKW_mkOqw5VQtJu59P9-YH1XFKG0opE51Uij-vDrjqRN0oeVj9WfqMqwgZLbmM4JOJwzaHaTAEvCVfY8h4tzrxMN4kTOQbXiOM5CKMaOYRIrlAswY_pIkEV7ppG3xCkgM5Q8jk-zqYX2TwZUM0axxHIAl_Zxwhw4vqmYMx4fH9eFT9-PTx8vRscf7l8_L05Hxh6lbJhbJ1Y6Hn2DJnobG1MG2vrOK0kzU3nVCdLAVQIB1tW-CSWSc5Uiqpql3Pj6rlzmsDbPQ2DhPEGx1g0HeFEFcaYh7MiLoRvCtKJ4QwjRB9LxhTvZEGjGqcbIvrw861nfsJrUGfI4yPpI87fljrVbjWjLVSCl4Xw5t7QwxXM6aspyGZ25fxGOakORNKdh3jtKCv_0M3YY7lJ3aUYA3jqlBvd5SJIaWI7uE0jOrblOi9lBT61f4FHth_meB_AdYxuPM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3159514139</pqid></control><display><type>article</type><title>Integrated Transcriptomic and Proteomic Analyses Reveal Molecular Mechanism of Response to Heat Shock in Morchella sextelata</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Zhang, Jiexiong ; Li, Yanxia ; Mao, Yifan ; Zhang, Yesheng ; Zhou, Botong ; Liu, Wei ; Wang, Wen ; Zhang, Chen</creator><creatorcontrib>Zhang, Jiexiong ; Li, Yanxia ; Mao, Yifan ; Zhang, Yesheng ; Zhou, Botong ; Liu, Wei ; Wang, Wen ; Zhang, Chen</creatorcontrib><description>Morels ( spp.), as one of the rare macroascomycetes that can be cultivated artificially, possess significant economic and scientific values. Morel cultivation is highly sensitive to elevated temperatures; however, the mechanisms of their response to heat shock remain poorly understood. This study integrated transcriptomic and quantitative proteomic analyses of two strains with different thermotolerance (labeled as strains C and D) under normal (18 °C) and high temperature (28 °C) conditions. From over 9300 transcripts and 5000 proteins, both consistency and heterogeneity were found in response to heat shock between the two strains. Both strains displayed a capacity to maintain cellular homeostasis in response to heat shock through highly expressed cell wall integrity (CWI) pathways, heat shock proteins (HSPs), and antioxidant systems. However, strain D, which exhibited stronger thermotolerance, specifically upregulated the ubiquitin ligase , thereby further promoting the expression of HSPs, which may be a key factor influencing the thermotolerance difference among strains. A conceptual model of the heat shock adaptation regulatory network in was proposed for the first time; the results provide novel insights into the thermotolerance response mechanisms of macroascomycetes and valuable resources for the breeding enhancement of thermotolerant morel strains.</description><identifier>ISSN: 2309-608X</identifier><identifier>EISSN: 2309-608X</identifier><identifier>DOI: 10.3390/jof11010076</identifier><identifier>PMID: 39852496</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Adaptation ; antioxidant ; Cell walls ; CWI ; Global warming ; Greenhouses ; Heat ; Heat shock factors ; Heat shock proteins ; High temperature ; Homeostasis ; HSPs ; Molecular modelling ; Morchella sextelata ; Mushrooms ; Proteomics ; Reactive oxygen species ; ribosome ; Temperature ; Temperature tolerance ; thermotolerance ; Transcriptomics ; Ubiquitin-protein ligase</subject><ispartof>Journal of fungi (Basel), 2025-01, Vol.11 (1), p.76</ispartof><rights>2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2025 by the authors. 2025</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2796-9d24dab3e71fda4d25c7b9d9308623c859867b9a9a6f077a361df63e006092fb3</cites><orcidid>0000-0001-7586-7117 ; 0000-0002-1091-5867 ; 0000-0002-7801-2066 ; 0009-0002-2461-0607 ; 0000-0002-5733-7574</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11766532/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11766532/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39852496$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Jiexiong</creatorcontrib><creatorcontrib>Li, Yanxia</creatorcontrib><creatorcontrib>Mao, Yifan</creatorcontrib><creatorcontrib>Zhang, Yesheng</creatorcontrib><creatorcontrib>Zhou, Botong</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Wang, Wen</creatorcontrib><creatorcontrib>Zhang, Chen</creatorcontrib><title>Integrated Transcriptomic and Proteomic Analyses Reveal Molecular Mechanism of Response to Heat Shock in Morchella sextelata</title><title>Journal of fungi (Basel)</title><addtitle>J Fungi (Basel)</addtitle><description>Morels ( spp.), as one of the rare macroascomycetes that can be cultivated artificially, possess significant economic and scientific values. Morel cultivation is highly sensitive to elevated temperatures; however, the mechanisms of their response to heat shock remain poorly understood. This study integrated transcriptomic and quantitative proteomic analyses of two strains with different thermotolerance (labeled as strains C and D) under normal (18 °C) and high temperature (28 °C) conditions. From over 9300 transcripts and 5000 proteins, both consistency and heterogeneity were found in response to heat shock between the two strains. Both strains displayed a capacity to maintain cellular homeostasis in response to heat shock through highly expressed cell wall integrity (CWI) pathways, heat shock proteins (HSPs), and antioxidant systems. However, strain D, which exhibited stronger thermotolerance, specifically upregulated the ubiquitin ligase , thereby further promoting the expression of HSPs, which may be a key factor influencing the thermotolerance difference among strains. A conceptual model of the heat shock adaptation regulatory network in was proposed for the first time; the results provide novel insights into the thermotolerance response mechanisms of macroascomycetes and valuable resources for the breeding enhancement of thermotolerant morel strains.</description><subject>Adaptation</subject><subject>antioxidant</subject><subject>Cell walls</subject><subject>CWI</subject><subject>Global warming</subject><subject>Greenhouses</subject><subject>Heat</subject><subject>Heat shock factors</subject><subject>Heat shock proteins</subject><subject>High temperature</subject><subject>Homeostasis</subject><subject>HSPs</subject><subject>Molecular modelling</subject><subject>Morchella sextelata</subject><subject>Mushrooms</subject><subject>Proteomics</subject><subject>Reactive oxygen species</subject><subject>ribosome</subject><subject>Temperature</subject><subject>Temperature tolerance</subject><subject>thermotolerance</subject><subject>Transcriptomics</subject><subject>Ubiquitin-protein ligase</subject><issn>2309-608X</issn><issn>2309-608X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNpdks9rFDEUxwdRbKk9eZeAF0FWk8kkMzlJKWoXWhSt4C28SV52Z51JtkmmWPCPN-3WsvWU5L1PPuTHt6peMvqOc0Xfb4JjjDJKW_mkOqw5VQtJu59P9-YH1XFKG0opE51Uij-vDrjqRN0oeVj9WfqMqwgZLbmM4JOJwzaHaTAEvCVfY8h4tzrxMN4kTOQbXiOM5CKMaOYRIrlAswY_pIkEV7ppG3xCkgM5Q8jk-zqYX2TwZUM0axxHIAl_Zxwhw4vqmYMx4fH9eFT9-PTx8vRscf7l8_L05Hxh6lbJhbJ1Y6Hn2DJnobG1MG2vrOK0kzU3nVCdLAVQIB1tW-CSWSc5Uiqpql3Pj6rlzmsDbPQ2DhPEGx1g0HeFEFcaYh7MiLoRvCtKJ4QwjRB9LxhTvZEGjGqcbIvrw861nfsJrUGfI4yPpI87fljrVbjWjLVSCl4Xw5t7QwxXM6aspyGZ25fxGOakORNKdh3jtKCv_0M3YY7lJ3aUYA3jqlBvd5SJIaWI7uE0jOrblOi9lBT61f4FHth_meB_AdYxuPM</recordid><startdate>20250118</startdate><enddate>20250118</enddate><creator>Zhang, Jiexiong</creator><creator>Li, Yanxia</creator><creator>Mao, Yifan</creator><creator>Zhang, Yesheng</creator><creator>Zhou, Botong</creator><creator>Liu, Wei</creator><creator>Wang, Wen</creator><creator>Zhang, Chen</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7586-7117</orcidid><orcidid>https://orcid.org/0000-0002-1091-5867</orcidid><orcidid>https://orcid.org/0000-0002-7801-2066</orcidid><orcidid>https://orcid.org/0009-0002-2461-0607</orcidid><orcidid>https://orcid.org/0000-0002-5733-7574</orcidid></search><sort><creationdate>20250118</creationdate><title>Integrated Transcriptomic and Proteomic Analyses Reveal Molecular Mechanism of Response to Heat Shock in Morchella sextelata</title><author>Zhang, Jiexiong ; Li, Yanxia ; Mao, Yifan ; Zhang, Yesheng ; Zhou, Botong ; Liu, Wei ; Wang, Wen ; Zhang, Chen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2796-9d24dab3e71fda4d25c7b9d9308623c859867b9a9a6f077a361df63e006092fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Adaptation</topic><topic>antioxidant</topic><topic>Cell walls</topic><topic>CWI</topic><topic>Global warming</topic><topic>Greenhouses</topic><topic>Heat</topic><topic>Heat shock factors</topic><topic>Heat shock proteins</topic><topic>High temperature</topic><topic>Homeostasis</topic><topic>HSPs</topic><topic>Molecular modelling</topic><topic>Morchella sextelata</topic><topic>Mushrooms</topic><topic>Proteomics</topic><topic>Reactive oxygen species</topic><topic>ribosome</topic><topic>Temperature</topic><topic>Temperature tolerance</topic><topic>thermotolerance</topic><topic>Transcriptomics</topic><topic>Ubiquitin-protein ligase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jiexiong</creatorcontrib><creatorcontrib>Li, Yanxia</creatorcontrib><creatorcontrib>Mao, Yifan</creatorcontrib><creatorcontrib>Zhang, Yesheng</creatorcontrib><creatorcontrib>Zhou, Botong</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Wang, Wen</creatorcontrib><creatorcontrib>Zhang, Chen</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of fungi (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jiexiong</au><au>Li, Yanxia</au><au>Mao, Yifan</au><au>Zhang, Yesheng</au><au>Zhou, Botong</au><au>Liu, Wei</au><au>Wang, Wen</au><au>Zhang, Chen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrated Transcriptomic and Proteomic Analyses Reveal Molecular Mechanism of Response to Heat Shock in Morchella sextelata</atitle><jtitle>Journal of fungi (Basel)</jtitle><addtitle>J Fungi (Basel)</addtitle><date>2025-01-18</date><risdate>2025</risdate><volume>11</volume><issue>1</issue><spage>76</spage><pages>76-</pages><issn>2309-608X</issn><eissn>2309-608X</eissn><abstract>Morels ( spp.), as one of the rare macroascomycetes that can be cultivated artificially, possess significant economic and scientific values. Morel cultivation is highly sensitive to elevated temperatures; however, the mechanisms of their response to heat shock remain poorly understood. This study integrated transcriptomic and quantitative proteomic analyses of two strains with different thermotolerance (labeled as strains C and D) under normal (18 °C) and high temperature (28 °C) conditions. From over 9300 transcripts and 5000 proteins, both consistency and heterogeneity were found in response to heat shock between the two strains. Both strains displayed a capacity to maintain cellular homeostasis in response to heat shock through highly expressed cell wall integrity (CWI) pathways, heat shock proteins (HSPs), and antioxidant systems. However, strain D, which exhibited stronger thermotolerance, specifically upregulated the ubiquitin ligase , thereby further promoting the expression of HSPs, which may be a key factor influencing the thermotolerance difference among strains. A conceptual model of the heat shock adaptation regulatory network in was proposed for the first time; the results provide novel insights into the thermotolerance response mechanisms of macroascomycetes and valuable resources for the breeding enhancement of thermotolerant morel strains.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39852496</pmid><doi>10.3390/jof11010076</doi><orcidid>https://orcid.org/0000-0001-7586-7117</orcidid><orcidid>https://orcid.org/0000-0002-1091-5867</orcidid><orcidid>https://orcid.org/0000-0002-7801-2066</orcidid><orcidid>https://orcid.org/0009-0002-2461-0607</orcidid><orcidid>https://orcid.org/0000-0002-5733-7574</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2309-608X
ispartof Journal of fungi (Basel), 2025-01, Vol.11 (1), p.76
issn 2309-608X
2309-608X
language eng
recordid cdi_crossref_primary_10_3390_jof11010076
source MDPI - Multidisciplinary Digital Publishing Institute; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access
subjects Adaptation
antioxidant
Cell walls
CWI
Global warming
Greenhouses
Heat
Heat shock factors
Heat shock proteins
High temperature
Homeostasis
HSPs
Molecular modelling
Morchella sextelata
Mushrooms
Proteomics
Reactive oxygen species
ribosome
Temperature
Temperature tolerance
thermotolerance
Transcriptomics
Ubiquitin-protein ligase
title Integrated Transcriptomic and Proteomic Analyses Reveal Molecular Mechanism of Response to Heat Shock in Morchella sextelata
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T04%3A03%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrated%20Transcriptomic%20and%20Proteomic%20Analyses%20Reveal%20Molecular%20Mechanism%20of%20Response%20to%20Heat%20Shock%20in%20Morchella%20sextelata&rft.jtitle=Journal%20of%20fungi%20(Basel)&rft.au=Zhang,%20Jiexiong&rft.date=2025-01-18&rft.volume=11&rft.issue=1&rft.spage=76&rft.pages=76-&rft.issn=2309-608X&rft.eissn=2309-608X&rft_id=info:doi/10.3390/jof11010076&rft_dat=%3Cproquest_doaj_%3E3159688130%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3159514139&rft_id=info:pmid/39852496&rft_doaj_id=oai_doaj_org_article_45383c8f555c455bb5119bc6cac94f67&rfr_iscdi=true