Enhanced CATBraTS for Brain Tumour Semantic Segmentation

The early and precise identification of a brain tumour is imperative for enhancing a patient’s life expectancy; this can be facilitated by quick and efficient tumour segmentation in medical imaging. Automatic brain tumour segmentation tools in computer vision have integrated powerful deep learning a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of imaging 2025-01, Vol.11 (1), p.8
Hauptverfasser: El Badaoui, Rim, Bonmati Coll, Ester, Psarrou, Alexandra, Asaturyan, Hykoush A., Villarini, Barbara
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 8
container_title Journal of imaging
container_volume 11
creator El Badaoui, Rim
Bonmati Coll, Ester
Psarrou, Alexandra
Asaturyan, Hykoush A.
Villarini, Barbara
description The early and precise identification of a brain tumour is imperative for enhancing a patient’s life expectancy; this can be facilitated by quick and efficient tumour segmentation in medical imaging. Automatic brain tumour segmentation tools in computer vision have integrated powerful deep learning architectures to enable accurate tumour boundary delineation. Our study aims to demonstrate improved segmentation accuracy and higher statistical stability, using datasets obtained from diverse imaging acquisition parameters. This paper introduces a novel, fully automated model called Enhanced Channel Attention Transformer (E-CATBraTS) for Brain Tumour Semantic Segmentation; this model builds upon 3D CATBraTS, a vision transformer employed in magnetic resonance imaging (MRI) brain tumour segmentation tasks. E-CATBraTS integrates convolutional neural networks and Swin Transformer, incorporating channel shuffling and attention mechanisms to effectively segment brain tumours in multi-modal MRI. The model was evaluated on four datasets containing 3137 brain MRI scans. Through the adoption of E-CATBraTS, the accuracy of the results improved significantly on two datasets, outperforming the current state-of-the-art models by a mean DSC of 2.6% while maintaining a high accuracy that is comparable to the top-performing models on the other datasets. The results demonstrate that E-CATBraTS achieves both high segmentation accuracy and elevated generalisation abilities, ensuring the model is robust to dataset variation.
doi_str_mv 10.3390/jimaging11010008
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_3390_jimaging11010008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_3390_jimaging11010008</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_3390_jimaging110100083</originalsourceid><addsrcrecordid>eNqdjrEKwjAURYMoWLS7Y36g-tI4tKOWinszuIVQ05piXiRpB__eCA7i6HC5Z7gXDiEbBlvOS9gNxqreYM8YMAAoZiTJOePZnvPL_IuXJA1hiAtW5jFlQooabwpbfaXVQRy9Eg3tnKeRDFIxWTd52mircDRthN5qHNVoHK7JolP3oNNPrwicalGds9a7ELzu5MNHK_-UDORbUv5K8j8uL1ZMRmI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Enhanced CATBraTS for Brain Tumour Semantic Segmentation</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>El Badaoui, Rim ; Bonmati Coll, Ester ; Psarrou, Alexandra ; Asaturyan, Hykoush A. ; Villarini, Barbara</creator><creatorcontrib>El Badaoui, Rim ; Bonmati Coll, Ester ; Psarrou, Alexandra ; Asaturyan, Hykoush A. ; Villarini, Barbara</creatorcontrib><description>The early and precise identification of a brain tumour is imperative for enhancing a patient’s life expectancy; this can be facilitated by quick and efficient tumour segmentation in medical imaging. Automatic brain tumour segmentation tools in computer vision have integrated powerful deep learning architectures to enable accurate tumour boundary delineation. Our study aims to demonstrate improved segmentation accuracy and higher statistical stability, using datasets obtained from diverse imaging acquisition parameters. This paper introduces a novel, fully automated model called Enhanced Channel Attention Transformer (E-CATBraTS) for Brain Tumour Semantic Segmentation; this model builds upon 3D CATBraTS, a vision transformer employed in magnetic resonance imaging (MRI) brain tumour segmentation tasks. E-CATBraTS integrates convolutional neural networks and Swin Transformer, incorporating channel shuffling and attention mechanisms to effectively segment brain tumours in multi-modal MRI. The model was evaluated on four datasets containing 3137 brain MRI scans. Through the adoption of E-CATBraTS, the accuracy of the results improved significantly on two datasets, outperforming the current state-of-the-art models by a mean DSC of 2.6% while maintaining a high accuracy that is comparable to the top-performing models on the other datasets. The results demonstrate that E-CATBraTS achieves both high segmentation accuracy and elevated generalisation abilities, ensuring the model is robust to dataset variation.</description><identifier>ISSN: 2313-433X</identifier><identifier>EISSN: 2313-433X</identifier><identifier>DOI: 10.3390/jimaging11010008</identifier><language>eng</language><ispartof>Journal of imaging, 2025-01, Vol.11 (1), p.8</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-crossref_primary_10_3390_jimaging110100083</cites><orcidid>0000-0002-2846-0610</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27923,27924</link.rule.ids></links><search><creatorcontrib>El Badaoui, Rim</creatorcontrib><creatorcontrib>Bonmati Coll, Ester</creatorcontrib><creatorcontrib>Psarrou, Alexandra</creatorcontrib><creatorcontrib>Asaturyan, Hykoush A.</creatorcontrib><creatorcontrib>Villarini, Barbara</creatorcontrib><title>Enhanced CATBraTS for Brain Tumour Semantic Segmentation</title><title>Journal of imaging</title><description>The early and precise identification of a brain tumour is imperative for enhancing a patient’s life expectancy; this can be facilitated by quick and efficient tumour segmentation in medical imaging. Automatic brain tumour segmentation tools in computer vision have integrated powerful deep learning architectures to enable accurate tumour boundary delineation. Our study aims to demonstrate improved segmentation accuracy and higher statistical stability, using datasets obtained from diverse imaging acquisition parameters. This paper introduces a novel, fully automated model called Enhanced Channel Attention Transformer (E-CATBraTS) for Brain Tumour Semantic Segmentation; this model builds upon 3D CATBraTS, a vision transformer employed in magnetic resonance imaging (MRI) brain tumour segmentation tasks. E-CATBraTS integrates convolutional neural networks and Swin Transformer, incorporating channel shuffling and attention mechanisms to effectively segment brain tumours in multi-modal MRI. The model was evaluated on four datasets containing 3137 brain MRI scans. Through the adoption of E-CATBraTS, the accuracy of the results improved significantly on two datasets, outperforming the current state-of-the-art models by a mean DSC of 2.6% while maintaining a high accuracy that is comparable to the top-performing models on the other datasets. The results demonstrate that E-CATBraTS achieves both high segmentation accuracy and elevated generalisation abilities, ensuring the model is robust to dataset variation.</description><issn>2313-433X</issn><issn>2313-433X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNqdjrEKwjAURYMoWLS7Y36g-tI4tKOWinszuIVQ05piXiRpB__eCA7i6HC5Z7gXDiEbBlvOS9gNxqreYM8YMAAoZiTJOePZnvPL_IuXJA1hiAtW5jFlQooabwpbfaXVQRy9Eg3tnKeRDFIxWTd52mircDRthN5qHNVoHK7JolP3oNNPrwicalGds9a7ELzu5MNHK_-UDORbUv5K8j8uL1ZMRmI</recordid><startdate>20250103</startdate><enddate>20250103</enddate><creator>El Badaoui, Rim</creator><creator>Bonmati Coll, Ester</creator><creator>Psarrou, Alexandra</creator><creator>Asaturyan, Hykoush A.</creator><creator>Villarini, Barbara</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2846-0610</orcidid></search><sort><creationdate>20250103</creationdate><title>Enhanced CATBraTS for Brain Tumour Semantic Segmentation</title><author>El Badaoui, Rim ; Bonmati Coll, Ester ; Psarrou, Alexandra ; Asaturyan, Hykoush A. ; Villarini, Barbara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_3390_jimaging110100083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>El Badaoui, Rim</creatorcontrib><creatorcontrib>Bonmati Coll, Ester</creatorcontrib><creatorcontrib>Psarrou, Alexandra</creatorcontrib><creatorcontrib>Asaturyan, Hykoush A.</creatorcontrib><creatorcontrib>Villarini, Barbara</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>El Badaoui, Rim</au><au>Bonmati Coll, Ester</au><au>Psarrou, Alexandra</au><au>Asaturyan, Hykoush A.</au><au>Villarini, Barbara</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced CATBraTS for Brain Tumour Semantic Segmentation</atitle><jtitle>Journal of imaging</jtitle><date>2025-01-03</date><risdate>2025</risdate><volume>11</volume><issue>1</issue><spage>8</spage><pages>8-</pages><issn>2313-433X</issn><eissn>2313-433X</eissn><abstract>The early and precise identification of a brain tumour is imperative for enhancing a patient’s life expectancy; this can be facilitated by quick and efficient tumour segmentation in medical imaging. Automatic brain tumour segmentation tools in computer vision have integrated powerful deep learning architectures to enable accurate tumour boundary delineation. Our study aims to demonstrate improved segmentation accuracy and higher statistical stability, using datasets obtained from diverse imaging acquisition parameters. This paper introduces a novel, fully automated model called Enhanced Channel Attention Transformer (E-CATBraTS) for Brain Tumour Semantic Segmentation; this model builds upon 3D CATBraTS, a vision transformer employed in magnetic resonance imaging (MRI) brain tumour segmentation tasks. E-CATBraTS integrates convolutional neural networks and Swin Transformer, incorporating channel shuffling and attention mechanisms to effectively segment brain tumours in multi-modal MRI. The model was evaluated on four datasets containing 3137 brain MRI scans. Through the adoption of E-CATBraTS, the accuracy of the results improved significantly on two datasets, outperforming the current state-of-the-art models by a mean DSC of 2.6% while maintaining a high accuracy that is comparable to the top-performing models on the other datasets. The results demonstrate that E-CATBraTS achieves both high segmentation accuracy and elevated generalisation abilities, ensuring the model is robust to dataset variation.</abstract><doi>10.3390/jimaging11010008</doi><orcidid>https://orcid.org/0000-0002-2846-0610</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2313-433X
ispartof Journal of imaging, 2025-01, Vol.11 (1), p.8
issn 2313-433X
2313-433X
language eng
recordid cdi_crossref_primary_10_3390_jimaging11010008
source DOAJ Directory of Open Access Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central
title Enhanced CATBraTS for Brain Tumour Semantic Segmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T22%3A55%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20CATBraTS%20for%20Brain%20Tumour%20Semantic%20Segmentation&rft.jtitle=Journal%20of%20imaging&rft.au=El%20Badaoui,%20Rim&rft.date=2025-01-03&rft.volume=11&rft.issue=1&rft.spage=8&rft.pages=8-&rft.issn=2313-433X&rft.eissn=2313-433X&rft_id=info:doi/10.3390/jimaging11010008&rft_dat=%3Ccrossref%3E10_3390_jimaging11010008%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true