Cellular Senescence in Hepatocellular Carcinoma: Immune Microenvironment Insights via Machine Learning and In Vitro Experiments
Hepatocellular carcinoma (HCC), a leading liver tumor globally, is influenced by diverse risk factors. Cellular senescence, marked by permanent cell cycle arrest, plays a crucial role in cancer biology, but its markers and roles in the HCC immune microenvironment remain unclear. Three machine learni...
Gespeichert in:
Veröffentlicht in: | International journal of molecular sciences 2025-01, Vol.26 (2), p.773 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 773 |
container_title | International journal of molecular sciences |
container_volume | 26 |
creator | Lu, Xinhe Luo, Yuhang Huang, Yun Zhu, Zhiqiang Yin, Hongyan Xu, Shunqing |
description | Hepatocellular carcinoma (HCC), a leading liver tumor globally, is influenced by diverse risk factors. Cellular senescence, marked by permanent cell cycle arrest, plays a crucial role in cancer biology, but its markers and roles in the HCC immune microenvironment remain unclear. Three machine learning methods, namely k nearest neighbor (KNN), support vector machine (SVM), and random forest (RF), are utilized to identify eight key HCC cell senescence markers (HCC-CSMs). Consensus clustering revealed molecular subtypes. The single-cell analysis explored the tumor microenvironment, immune checkpoints, and immunotherapy responses. In vitro, RNA interference mediated
knockdown, and co-culture experiments assessed its impact. Cellular senescence-related genes predicted HCC survival information better than differential expression genes (DEGs). Eight key HCC-CSMs were identified, which revealed two distinct clusters with different clinical characteristics and mutation patterns. By single-cell RNA-seq data, we investigated the immunological microenvironment and observed that increasing immune cells allow hepatocytes to regain population dominance. This phenomenon may be associated with the HCC-CSMs identified in our study. By combining bulk RNA sequencing and single-cell RNA sequencing data, we identified the key gene
and the natural killer (NK) cells that express
at the highest levels.
knockdown increased NK cell proliferation but reduced function, potentially aiding tumor survival. These findings provide insights into senescence-driven HCC progression and potential therapeutic targets. |
doi_str_mv | 10.3390/ijms26020773 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_crossref_primary_10_3390_ijms26020773</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3159504739</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2153-318f0ec14fbee1604ad4901a1fb573af6f7629147725276e5c8de7a2a7992d663</originalsourceid><addsrcrecordid>eNpdkctvEzEQxi1ERUvhxhlZ4sKBFD_W9poLQlGhkVJx4HFdTbyziaNdO9i7EZz413HoQ2lPY2l-_ma--Qh5xdmFlJa999shC80EM0Y-IWe8EmLGmDZPj96n5HnOW8aEFMo-I6fS1spWtTojf-fY91MPiX7DgNlhcEh9oFe4gzG6u-YckvMhDvCBLoZhCkivvUsRw96nGAYMI12E7NebMdO9B3oNbuMLtURIwYc1hdAWgv70Y4r08vcOkz_8yi_ISQd9xpe39Zz8-Hz5fX41W379sph_Ws6c4ErOJK87ho5X3QqRa1ZBW1nGgXcrZSR0ujNaWF4ZI5QwGpWrWzQgwFgrWq3lOfl4o7ubVgO2xeeYoG92ZQ1If5oIvnnYCX7TrOO-4dxopXhdFN7eKqT4a8I8NoPPhwNBwDjlRnJlyzQtVUHfPEK3cUqh-PtPKVYZaQv17oYqh8w5YXe_DWfNIdrmONqCvz52cA_fZSn_AeGioWE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3159504739</pqid></control><display><type>article</type><title>Cellular Senescence in Hepatocellular Carcinoma: Immune Microenvironment Insights via Machine Learning and In Vitro Experiments</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Lu, Xinhe ; Luo, Yuhang ; Huang, Yun ; Zhu, Zhiqiang ; Yin, Hongyan ; Xu, Shunqing</creator><creatorcontrib>Lu, Xinhe ; Luo, Yuhang ; Huang, Yun ; Zhu, Zhiqiang ; Yin, Hongyan ; Xu, Shunqing</creatorcontrib><description>Hepatocellular carcinoma (HCC), a leading liver tumor globally, is influenced by diverse risk factors. Cellular senescence, marked by permanent cell cycle arrest, plays a crucial role in cancer biology, but its markers and roles in the HCC immune microenvironment remain unclear. Three machine learning methods, namely k nearest neighbor (KNN), support vector machine (SVM), and random forest (RF), are utilized to identify eight key HCC cell senescence markers (HCC-CSMs). Consensus clustering revealed molecular subtypes. The single-cell analysis explored the tumor microenvironment, immune checkpoints, and immunotherapy responses. In vitro, RNA interference mediated
knockdown, and co-culture experiments assessed its impact. Cellular senescence-related genes predicted HCC survival information better than differential expression genes (DEGs). Eight key HCC-CSMs were identified, which revealed two distinct clusters with different clinical characteristics and mutation patterns. By single-cell RNA-seq data, we investigated the immunological microenvironment and observed that increasing immune cells allow hepatocytes to regain population dominance. This phenomenon may be associated with the HCC-CSMs identified in our study. By combining bulk RNA sequencing and single-cell RNA sequencing data, we identified the key gene
and the natural killer (NK) cells that express
at the highest levels.
knockdown increased NK cell proliferation but reduced function, potentially aiding tumor survival. These findings provide insights into senescence-driven HCC progression and potential therapeutic targets.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms26020773</identifier><identifier>PMID: 39859485</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Aging ; Algorithms ; Biomarkers ; Biomarkers, Tumor - genetics ; Cancer therapies ; Carcinoma, Hepatocellular - genetics ; Carcinoma, Hepatocellular - immunology ; Carcinoma, Hepatocellular - pathology ; Cell cycle ; Cell Line, Tumor ; Cellular Senescence - genetics ; Cellular Senescence - immunology ; Clinical outcomes ; Datasets ; Epigenetics ; Gene Expression Regulation, Neoplastic ; Genes ; Humans ; Killer Cells, Natural - immunology ; Killer Cells, Natural - metabolism ; Liver cancer ; Liver Neoplasms - genetics ; Liver Neoplasms - immunology ; Liver Neoplasms - metabolism ; Liver Neoplasms - pathology ; Machine Learning ; Medical prognosis ; Metabolism ; Patients ; Radiation ; Regression analysis ; Senescence ; Single-Cell Analysis - methods ; Survival analysis ; Survivin - genetics ; Survivin - metabolism ; Tumor Microenvironment - genetics ; Tumor Microenvironment - immunology</subject><ispartof>International journal of molecular sciences, 2025-01, Vol.26 (2), p.773</ispartof><rights>2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2025 by the authors. 2025</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2153-318f0ec14fbee1604ad4901a1fb573af6f7629147725276e5c8de7a2a7992d663</cites><orcidid>0009-0008-2912-0109 ; 0000-0002-7479-9279</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11765518/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11765518/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39859485$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Xinhe</creatorcontrib><creatorcontrib>Luo, Yuhang</creatorcontrib><creatorcontrib>Huang, Yun</creatorcontrib><creatorcontrib>Zhu, Zhiqiang</creatorcontrib><creatorcontrib>Yin, Hongyan</creatorcontrib><creatorcontrib>Xu, Shunqing</creatorcontrib><title>Cellular Senescence in Hepatocellular Carcinoma: Immune Microenvironment Insights via Machine Learning and In Vitro Experiments</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>Hepatocellular carcinoma (HCC), a leading liver tumor globally, is influenced by diverse risk factors. Cellular senescence, marked by permanent cell cycle arrest, plays a crucial role in cancer biology, but its markers and roles in the HCC immune microenvironment remain unclear. Three machine learning methods, namely k nearest neighbor (KNN), support vector machine (SVM), and random forest (RF), are utilized to identify eight key HCC cell senescence markers (HCC-CSMs). Consensus clustering revealed molecular subtypes. The single-cell analysis explored the tumor microenvironment, immune checkpoints, and immunotherapy responses. In vitro, RNA interference mediated
knockdown, and co-culture experiments assessed its impact. Cellular senescence-related genes predicted HCC survival information better than differential expression genes (DEGs). Eight key HCC-CSMs were identified, which revealed two distinct clusters with different clinical characteristics and mutation patterns. By single-cell RNA-seq data, we investigated the immunological microenvironment and observed that increasing immune cells allow hepatocytes to regain population dominance. This phenomenon may be associated with the HCC-CSMs identified in our study. By combining bulk RNA sequencing and single-cell RNA sequencing data, we identified the key gene
and the natural killer (NK) cells that express
at the highest levels.
knockdown increased NK cell proliferation but reduced function, potentially aiding tumor survival. These findings provide insights into senescence-driven HCC progression and potential therapeutic targets.</description><subject>Aging</subject><subject>Algorithms</subject><subject>Biomarkers</subject><subject>Biomarkers, Tumor - genetics</subject><subject>Cancer therapies</subject><subject>Carcinoma, Hepatocellular - genetics</subject><subject>Carcinoma, Hepatocellular - immunology</subject><subject>Carcinoma, Hepatocellular - pathology</subject><subject>Cell cycle</subject><subject>Cell Line, Tumor</subject><subject>Cellular Senescence - genetics</subject><subject>Cellular Senescence - immunology</subject><subject>Clinical outcomes</subject><subject>Datasets</subject><subject>Epigenetics</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Genes</subject><subject>Humans</subject><subject>Killer Cells, Natural - immunology</subject><subject>Killer Cells, Natural - metabolism</subject><subject>Liver cancer</subject><subject>Liver Neoplasms - genetics</subject><subject>Liver Neoplasms - immunology</subject><subject>Liver Neoplasms - metabolism</subject><subject>Liver Neoplasms - pathology</subject><subject>Machine Learning</subject><subject>Medical prognosis</subject><subject>Metabolism</subject><subject>Patients</subject><subject>Radiation</subject><subject>Regression analysis</subject><subject>Senescence</subject><subject>Single-Cell Analysis - methods</subject><subject>Survival analysis</subject><subject>Survivin - genetics</subject><subject>Survivin - metabolism</subject><subject>Tumor Microenvironment - genetics</subject><subject>Tumor Microenvironment - immunology</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkctvEzEQxi1ERUvhxhlZ4sKBFD_W9poLQlGhkVJx4HFdTbyziaNdO9i7EZz413HoQ2lPY2l-_ma--Qh5xdmFlJa999shC80EM0Y-IWe8EmLGmDZPj96n5HnOW8aEFMo-I6fS1spWtTojf-fY91MPiX7DgNlhcEh9oFe4gzG6u-YckvMhDvCBLoZhCkivvUsRw96nGAYMI12E7NebMdO9B3oNbuMLtURIwYc1hdAWgv70Y4r08vcOkz_8yi_ISQd9xpe39Zz8-Hz5fX41W379sph_Ws6c4ErOJK87ho5X3QqRa1ZBW1nGgXcrZSR0ujNaWF4ZI5QwGpWrWzQgwFgrWq3lOfl4o7ubVgO2xeeYoG92ZQ1If5oIvnnYCX7TrOO-4dxopXhdFN7eKqT4a8I8NoPPhwNBwDjlRnJlyzQtVUHfPEK3cUqh-PtPKVYZaQv17oYqh8w5YXe_DWfNIdrmONqCvz52cA_fZSn_AeGioWE</recordid><startdate>20250117</startdate><enddate>20250117</enddate><creator>Lu, Xinhe</creator><creator>Luo, Yuhang</creator><creator>Huang, Yun</creator><creator>Zhu, Zhiqiang</creator><creator>Yin, Hongyan</creator><creator>Xu, Shunqing</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0009-0008-2912-0109</orcidid><orcidid>https://orcid.org/0000-0002-7479-9279</orcidid></search><sort><creationdate>20250117</creationdate><title>Cellular Senescence in Hepatocellular Carcinoma: Immune Microenvironment Insights via Machine Learning and In Vitro Experiments</title><author>Lu, Xinhe ; Luo, Yuhang ; Huang, Yun ; Zhu, Zhiqiang ; Yin, Hongyan ; Xu, Shunqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2153-318f0ec14fbee1604ad4901a1fb573af6f7629147725276e5c8de7a2a7992d663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Aging</topic><topic>Algorithms</topic><topic>Biomarkers</topic><topic>Biomarkers, Tumor - genetics</topic><topic>Cancer therapies</topic><topic>Carcinoma, Hepatocellular - genetics</topic><topic>Carcinoma, Hepatocellular - immunology</topic><topic>Carcinoma, Hepatocellular - pathology</topic><topic>Cell cycle</topic><topic>Cell Line, Tumor</topic><topic>Cellular Senescence - genetics</topic><topic>Cellular Senescence - immunology</topic><topic>Clinical outcomes</topic><topic>Datasets</topic><topic>Epigenetics</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Genes</topic><topic>Humans</topic><topic>Killer Cells, Natural - immunology</topic><topic>Killer Cells, Natural - metabolism</topic><topic>Liver cancer</topic><topic>Liver Neoplasms - genetics</topic><topic>Liver Neoplasms - immunology</topic><topic>Liver Neoplasms - metabolism</topic><topic>Liver Neoplasms - pathology</topic><topic>Machine Learning</topic><topic>Medical prognosis</topic><topic>Metabolism</topic><topic>Patients</topic><topic>Radiation</topic><topic>Regression analysis</topic><topic>Senescence</topic><topic>Single-Cell Analysis - methods</topic><topic>Survival analysis</topic><topic>Survivin - genetics</topic><topic>Survivin - metabolism</topic><topic>Tumor Microenvironment - genetics</topic><topic>Tumor Microenvironment - immunology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Xinhe</creatorcontrib><creatorcontrib>Luo, Yuhang</creatorcontrib><creatorcontrib>Huang, Yun</creatorcontrib><creatorcontrib>Zhu, Zhiqiang</creatorcontrib><creatorcontrib>Yin, Hongyan</creatorcontrib><creatorcontrib>Xu, Shunqing</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Xinhe</au><au>Luo, Yuhang</au><au>Huang, Yun</au><au>Zhu, Zhiqiang</au><au>Yin, Hongyan</au><au>Xu, Shunqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cellular Senescence in Hepatocellular Carcinoma: Immune Microenvironment Insights via Machine Learning and In Vitro Experiments</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2025-01-17</date><risdate>2025</risdate><volume>26</volume><issue>2</issue><spage>773</spage><pages>773-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>Hepatocellular carcinoma (HCC), a leading liver tumor globally, is influenced by diverse risk factors. Cellular senescence, marked by permanent cell cycle arrest, plays a crucial role in cancer biology, but its markers and roles in the HCC immune microenvironment remain unclear. Three machine learning methods, namely k nearest neighbor (KNN), support vector machine (SVM), and random forest (RF), are utilized to identify eight key HCC cell senescence markers (HCC-CSMs). Consensus clustering revealed molecular subtypes. The single-cell analysis explored the tumor microenvironment, immune checkpoints, and immunotherapy responses. In vitro, RNA interference mediated
knockdown, and co-culture experiments assessed its impact. Cellular senescence-related genes predicted HCC survival information better than differential expression genes (DEGs). Eight key HCC-CSMs were identified, which revealed two distinct clusters with different clinical characteristics and mutation patterns. By single-cell RNA-seq data, we investigated the immunological microenvironment and observed that increasing immune cells allow hepatocytes to regain population dominance. This phenomenon may be associated with the HCC-CSMs identified in our study. By combining bulk RNA sequencing and single-cell RNA sequencing data, we identified the key gene
and the natural killer (NK) cells that express
at the highest levels.
knockdown increased NK cell proliferation but reduced function, potentially aiding tumor survival. These findings provide insights into senescence-driven HCC progression and potential therapeutic targets.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39859485</pmid><doi>10.3390/ijms26020773</doi><orcidid>https://orcid.org/0009-0008-2912-0109</orcidid><orcidid>https://orcid.org/0000-0002-7479-9279</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1422-0067 |
ispartof | International journal of molecular sciences, 2025-01, Vol.26 (2), p.773 |
issn | 1422-0067 1661-6596 1422-0067 |
language | eng |
recordid | cdi_crossref_primary_10_3390_ijms26020773 |
source | MDPI - Multidisciplinary Digital Publishing Institute; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Aging Algorithms Biomarkers Biomarkers, Tumor - genetics Cancer therapies Carcinoma, Hepatocellular - genetics Carcinoma, Hepatocellular - immunology Carcinoma, Hepatocellular - pathology Cell cycle Cell Line, Tumor Cellular Senescence - genetics Cellular Senescence - immunology Clinical outcomes Datasets Epigenetics Gene Expression Regulation, Neoplastic Genes Humans Killer Cells, Natural - immunology Killer Cells, Natural - metabolism Liver cancer Liver Neoplasms - genetics Liver Neoplasms - immunology Liver Neoplasms - metabolism Liver Neoplasms - pathology Machine Learning Medical prognosis Metabolism Patients Radiation Regression analysis Senescence Single-Cell Analysis - methods Survival analysis Survivin - genetics Survivin - metabolism Tumor Microenvironment - genetics Tumor Microenvironment - immunology |
title | Cellular Senescence in Hepatocellular Carcinoma: Immune Microenvironment Insights via Machine Learning and In Vitro Experiments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T09%3A58%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cellular%20Senescence%20in%20Hepatocellular%20Carcinoma:%20Immune%20Microenvironment%20Insights%20via%20Machine%20Learning%20and%20In%20Vitro%20Experiments&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Lu,%20Xinhe&rft.date=2025-01-17&rft.volume=26&rft.issue=2&rft.spage=773&rft.pages=773-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms26020773&rft_dat=%3Cproquest_pubme%3E3159504739%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3159504739&rft_id=info:pmid/39859485&rfr_iscdi=true |