Multi-Omics Analysis of Key microRNA-mRNA Metabolic Regulatory Networks in Skeletal Muscle of Obese Rabbits
microRNAs (miRNAs), small non-coding RNA with a length of about 22 nucleotides, are involved in the energy metabolism of skeletal muscle cells. However, their molecular mechanism of metabolism in rabbit skeletal muscle is still unclear. In this study, 16 rabbits, 8 in the control group (CON-G) and 8...
Gespeichert in:
Veröffentlicht in: | International journal of molecular sciences 2021-04, Vol.22 (8), p.4204, Article 4204 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | 4204 |
container_title | International journal of molecular sciences |
container_volume | 22 |
creator | Li, Yanhong Wang, Jie Elzo, Mauricio A. Gan, Mingchuan Tang, Tao Shao, Jiahao Lai, Tianfu Ma, Yuan Jia, Xianbo Lai, Songjia |
description | microRNAs (miRNAs), small non-coding RNA with a length of about 22 nucleotides, are involved in the energy metabolism of skeletal muscle cells. However, their molecular mechanism of metabolism in rabbit skeletal muscle is still unclear. In this study, 16 rabbits, 8 in the control group (CON-G) and 8 in the experimental group (HFD-G), were chosen to construct an obese model induced by a high-fat diet fed from 35 to 70 days of age. Subsequently, 54 differentially expressed miRNAs, 248 differentially expressed mRNAs, and 108 differentially expressed proteins related to the metabolism of skeletal muscle were detected and analyzed with three sequencing techniques (small RNA sequencing, transcriptome sequencing, and tandem mass tab (TMT) protein technology). It was found that 12 miRNAs and 12 core genes (e.g., CRYL1, VDAC3 and APIP) were significantly different in skeletal muscle from rabbits in the two groups. The network analysis showed that seven miRNA-mRNA pairs were involved in metabolism. Importantly, two miRNAs (miR-92a-3p and miR-30a/c/d-5p) regulated three transcription factors (MYBL2, STAT1 and IKZF1) that may be essential for lipid metabolism. These results enhance our understanding of molecular mechanisms associated with rabbit skeletal muscle metabolism and provide a basis for future studies in the metabolic diseases of human obesity. |
doi_str_mv | 10.3390/ijms22084204 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_3390_ijms22084204</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b5f6c5a78b574ba49362150984a25c43</doaj_id><sourcerecordid>2520865185</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-3f234436481aea060de4f9827cce42153b8f97b817954d057613a57e019b3a2a3</originalsourceid><addsrcrecordid>eNqNkktvEzEUhUcIREthxxqNxAYJBvx-bJCiiEdF20gB1pbteIITz7jYHqr8exxSopYVG9u6_nx8r85pmucQvMVYgnd-M2SEgCAIkAfNKSQIdQAw_rCeGYMdo5KdNE9y3gCAMKLycXNSHyJIuThttpdTKL5bDN7mdjbqsMs-t7Fvv7hdW4spLq9m3VCX9tIVbWLwtl269RR0iWnXXrlyE9M2t35sv25dqExoL6dsg9urLIzLrl1qY3zJT5tHvQ7ZPbvdz5rvHz98m3_uLhafzuezi84SLkqHe4QJwYwIqJ0GDKwc6aVA3FpHatvYiF5yIyCXlKwA5QxiTbkDUBqskcZnzflBdxX1Rl0nP-i0U1F79acQ01rpVHxtURnaM0s1F4ZyYjSRmNUfgBREI2oJrlrvD1rXkxncyrqxJB3uid6_Gf0PtY6_lAAcMQmrwKtbgRR_Ti4XNfhsXQh6dHHKCtHqHaNQ0Iq-_AfdxClVT_YUEYwwSUGl3hyo6k3OyfXHZiBQ-0Sou4mo-Iu7AxzhvxGowOsDcONM7LP1brTuiIEapWoGRqKewH4c8f_03BddfBzncRoL_g1XsNCz</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548646950</pqid></control><display><type>article</type><title>Multi-Omics Analysis of Key microRNA-mRNA Metabolic Regulatory Networks in Skeletal Muscle of Obese Rabbits</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Li, Yanhong ; Wang, Jie ; Elzo, Mauricio A. ; Gan, Mingchuan ; Tang, Tao ; Shao, Jiahao ; Lai, Tianfu ; Ma, Yuan ; Jia, Xianbo ; Lai, Songjia</creator><creatorcontrib>Li, Yanhong ; Wang, Jie ; Elzo, Mauricio A. ; Gan, Mingchuan ; Tang, Tao ; Shao, Jiahao ; Lai, Tianfu ; Ma, Yuan ; Jia, Xianbo ; Lai, Songjia</creatorcontrib><description>microRNAs (miRNAs), small non-coding RNA with a length of about 22 nucleotides, are involved in the energy metabolism of skeletal muscle cells. However, their molecular mechanism of metabolism in rabbit skeletal muscle is still unclear. In this study, 16 rabbits, 8 in the control group (CON-G) and 8 in the experimental group (HFD-G), were chosen to construct an obese model induced by a high-fat diet fed from 35 to 70 days of age. Subsequently, 54 differentially expressed miRNAs, 248 differentially expressed mRNAs, and 108 differentially expressed proteins related to the metabolism of skeletal muscle were detected and analyzed with three sequencing techniques (small RNA sequencing, transcriptome sequencing, and tandem mass tab (TMT) protein technology). It was found that 12 miRNAs and 12 core genes (e.g., CRYL1, VDAC3 and APIP) were significantly different in skeletal muscle from rabbits in the two groups. The network analysis showed that seven miRNA-mRNA pairs were involved in metabolism. Importantly, two miRNAs (miR-92a-3p and miR-30a/c/d-5p) regulated three transcription factors (MYBL2, STAT1 and IKZF1) that may be essential for lipid metabolism. These results enhance our understanding of molecular mechanisms associated with rabbit skeletal muscle metabolism and provide a basis for future studies in the metabolic diseases of human obesity.</description><identifier>ISSN: 1661-6596</identifier><identifier>ISSN: 1422-0067</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms22084204</identifier><identifier>PMID: 33921578</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>Biochemistry & Molecular Biology ; Chemistry ; Chemistry, Multidisciplinary ; Diet ; Energy metabolism ; Genes ; Genomes ; High fat diet ; Life Sciences & Biomedicine ; Lipid metabolism ; Lipids ; Metabolic disorders ; Metabolism ; microRNA ; MicroRNAs ; miRNA ; Molecular modelling ; mRNA ; Muscles ; Musculoskeletal system ; network ; Network analysis ; Non-coding RNA ; Nucleotides ; Obesity ; Physical Sciences ; Proteins ; rabbit ; Rabbits ; RNA polymerase ; Science & Technology ; Signal transduction ; Skeletal muscle ; Stat1 protein ; Transcription factors ; Transcriptomes ; Transfer RNA</subject><ispartof>International journal of molecular sciences, 2021-04, Vol.22 (8), p.4204, Article 4204</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>9</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000644332800001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c478t-3f234436481aea060de4f9827cce42153b8f97b817954d057613a57e019b3a2a3</citedby><cites>FETCH-LOGICAL-c478t-3f234436481aea060de4f9827cce42153b8f97b817954d057613a57e019b3a2a3</cites><orcidid>0000-0002-1399-7079 ; 0000-0002-6885-4104</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8072691/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8072691/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,887,27933,27934,39267,53800,53802</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33921578$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Yanhong</creatorcontrib><creatorcontrib>Wang, Jie</creatorcontrib><creatorcontrib>Elzo, Mauricio A.</creatorcontrib><creatorcontrib>Gan, Mingchuan</creatorcontrib><creatorcontrib>Tang, Tao</creatorcontrib><creatorcontrib>Shao, Jiahao</creatorcontrib><creatorcontrib>Lai, Tianfu</creatorcontrib><creatorcontrib>Ma, Yuan</creatorcontrib><creatorcontrib>Jia, Xianbo</creatorcontrib><creatorcontrib>Lai, Songjia</creatorcontrib><title>Multi-Omics Analysis of Key microRNA-mRNA Metabolic Regulatory Networks in Skeletal Muscle of Obese Rabbits</title><title>International journal of molecular sciences</title><addtitle>INT J MOL SCI</addtitle><addtitle>Int J Mol Sci</addtitle><description>microRNAs (miRNAs), small non-coding RNA with a length of about 22 nucleotides, are involved in the energy metabolism of skeletal muscle cells. However, their molecular mechanism of metabolism in rabbit skeletal muscle is still unclear. In this study, 16 rabbits, 8 in the control group (CON-G) and 8 in the experimental group (HFD-G), were chosen to construct an obese model induced by a high-fat diet fed from 35 to 70 days of age. Subsequently, 54 differentially expressed miRNAs, 248 differentially expressed mRNAs, and 108 differentially expressed proteins related to the metabolism of skeletal muscle were detected and analyzed with three sequencing techniques (small RNA sequencing, transcriptome sequencing, and tandem mass tab (TMT) protein technology). It was found that 12 miRNAs and 12 core genes (e.g., CRYL1, VDAC3 and APIP) were significantly different in skeletal muscle from rabbits in the two groups. The network analysis showed that seven miRNA-mRNA pairs were involved in metabolism. Importantly, two miRNAs (miR-92a-3p and miR-30a/c/d-5p) regulated three transcription factors (MYBL2, STAT1 and IKZF1) that may be essential for lipid metabolism. These results enhance our understanding of molecular mechanisms associated with rabbit skeletal muscle metabolism and provide a basis for future studies in the metabolic diseases of human obesity.</description><subject>Biochemistry & Molecular Biology</subject><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Diet</subject><subject>Energy metabolism</subject><subject>Genes</subject><subject>Genomes</subject><subject>High fat diet</subject><subject>Life Sciences & Biomedicine</subject><subject>Lipid metabolism</subject><subject>Lipids</subject><subject>Metabolic disorders</subject><subject>Metabolism</subject><subject>microRNA</subject><subject>MicroRNAs</subject><subject>miRNA</subject><subject>Molecular modelling</subject><subject>mRNA</subject><subject>Muscles</subject><subject>Musculoskeletal system</subject><subject>network</subject><subject>Network analysis</subject><subject>Non-coding RNA</subject><subject>Nucleotides</subject><subject>Obesity</subject><subject>Physical Sciences</subject><subject>Proteins</subject><subject>rabbit</subject><subject>Rabbits</subject><subject>RNA polymerase</subject><subject>Science & Technology</subject><subject>Signal transduction</subject><subject>Skeletal muscle</subject><subject>Stat1 protein</subject><subject>Transcription factors</subject><subject>Transcriptomes</subject><subject>Transfer RNA</subject><issn>1661-6596</issn><issn>1422-0067</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><sourceid>DOA</sourceid><recordid>eNqNkktvEzEUhUcIREthxxqNxAYJBvx-bJCiiEdF20gB1pbteIITz7jYHqr8exxSopYVG9u6_nx8r85pmucQvMVYgnd-M2SEgCAIkAfNKSQIdQAw_rCeGYMdo5KdNE9y3gCAMKLycXNSHyJIuThttpdTKL5bDN7mdjbqsMs-t7Fvv7hdW4spLq9m3VCX9tIVbWLwtl269RR0iWnXXrlyE9M2t35sv25dqExoL6dsg9urLIzLrl1qY3zJT5tHvQ7ZPbvdz5rvHz98m3_uLhafzuezi84SLkqHe4QJwYwIqJ0GDKwc6aVA3FpHatvYiF5yIyCXlKwA5QxiTbkDUBqskcZnzflBdxX1Rl0nP-i0U1F79acQ01rpVHxtURnaM0s1F4ZyYjSRmNUfgBREI2oJrlrvD1rXkxncyrqxJB3uid6_Gf0PtY6_lAAcMQmrwKtbgRR_Ti4XNfhsXQh6dHHKCtHqHaNQ0Iq-_AfdxClVT_YUEYwwSUGl3hyo6k3OyfXHZiBQ-0Sou4mo-Iu7AxzhvxGowOsDcONM7LP1brTuiIEapWoGRqKewH4c8f_03BddfBzncRoL_g1XsNCz</recordid><startdate>20210419</startdate><enddate>20210419</enddate><creator>Li, Yanhong</creator><creator>Wang, Jie</creator><creator>Elzo, Mauricio A.</creator><creator>Gan, Mingchuan</creator><creator>Tang, Tao</creator><creator>Shao, Jiahao</creator><creator>Lai, Tianfu</creator><creator>Ma, Yuan</creator><creator>Jia, Xianbo</creator><creator>Lai, Songjia</creator><general>Mdpi</general><general>MDPI AG</general><general>MDPI</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1399-7079</orcidid><orcidid>https://orcid.org/0000-0002-6885-4104</orcidid></search><sort><creationdate>20210419</creationdate><title>Multi-Omics Analysis of Key microRNA-mRNA Metabolic Regulatory Networks in Skeletal Muscle of Obese Rabbits</title><author>Li, Yanhong ; Wang, Jie ; Elzo, Mauricio A. ; Gan, Mingchuan ; Tang, Tao ; Shao, Jiahao ; Lai, Tianfu ; Ma, Yuan ; Jia, Xianbo ; Lai, Songjia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-3f234436481aea060de4f9827cce42153b8f97b817954d057613a57e019b3a2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biochemistry & Molecular Biology</topic><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Diet</topic><topic>Energy metabolism</topic><topic>Genes</topic><topic>Genomes</topic><topic>High fat diet</topic><topic>Life Sciences & Biomedicine</topic><topic>Lipid metabolism</topic><topic>Lipids</topic><topic>Metabolic disorders</topic><topic>Metabolism</topic><topic>microRNA</topic><topic>MicroRNAs</topic><topic>miRNA</topic><topic>Molecular modelling</topic><topic>mRNA</topic><topic>Muscles</topic><topic>Musculoskeletal system</topic><topic>network</topic><topic>Network analysis</topic><topic>Non-coding RNA</topic><topic>Nucleotides</topic><topic>Obesity</topic><topic>Physical Sciences</topic><topic>Proteins</topic><topic>rabbit</topic><topic>Rabbits</topic><topic>RNA polymerase</topic><topic>Science & Technology</topic><topic>Signal transduction</topic><topic>Skeletal muscle</topic><topic>Stat1 protein</topic><topic>Transcription factors</topic><topic>Transcriptomes</topic><topic>Transfer RNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yanhong</creatorcontrib><creatorcontrib>Wang, Jie</creatorcontrib><creatorcontrib>Elzo, Mauricio A.</creatorcontrib><creatorcontrib>Gan, Mingchuan</creatorcontrib><creatorcontrib>Tang, Tao</creatorcontrib><creatorcontrib>Shao, Jiahao</creatorcontrib><creatorcontrib>Lai, Tianfu</creatorcontrib><creatorcontrib>Ma, Yuan</creatorcontrib><creatorcontrib>Jia, Xianbo</creatorcontrib><creatorcontrib>Lai, Songjia</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yanhong</au><au>Wang, Jie</au><au>Elzo, Mauricio A.</au><au>Gan, Mingchuan</au><au>Tang, Tao</au><au>Shao, Jiahao</au><au>Lai, Tianfu</au><au>Ma, Yuan</au><au>Jia, Xianbo</au><au>Lai, Songjia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Omics Analysis of Key microRNA-mRNA Metabolic Regulatory Networks in Skeletal Muscle of Obese Rabbits</atitle><jtitle>International journal of molecular sciences</jtitle><stitle>INT J MOL SCI</stitle><addtitle>Int J Mol Sci</addtitle><date>2021-04-19</date><risdate>2021</risdate><volume>22</volume><issue>8</issue><spage>4204</spage><pages>4204-</pages><artnum>4204</artnum><issn>1661-6596</issn><issn>1422-0067</issn><eissn>1422-0067</eissn><abstract>microRNAs (miRNAs), small non-coding RNA with a length of about 22 nucleotides, are involved in the energy metabolism of skeletal muscle cells. However, their molecular mechanism of metabolism in rabbit skeletal muscle is still unclear. In this study, 16 rabbits, 8 in the control group (CON-G) and 8 in the experimental group (HFD-G), were chosen to construct an obese model induced by a high-fat diet fed from 35 to 70 days of age. Subsequently, 54 differentially expressed miRNAs, 248 differentially expressed mRNAs, and 108 differentially expressed proteins related to the metabolism of skeletal muscle were detected and analyzed with three sequencing techniques (small RNA sequencing, transcriptome sequencing, and tandem mass tab (TMT) protein technology). It was found that 12 miRNAs and 12 core genes (e.g., CRYL1, VDAC3 and APIP) were significantly different in skeletal muscle from rabbits in the two groups. The network analysis showed that seven miRNA-mRNA pairs were involved in metabolism. Importantly, two miRNAs (miR-92a-3p and miR-30a/c/d-5p) regulated three transcription factors (MYBL2, STAT1 and IKZF1) that may be essential for lipid metabolism. These results enhance our understanding of molecular mechanisms associated with rabbit skeletal muscle metabolism and provide a basis for future studies in the metabolic diseases of human obesity.</abstract><cop>BASEL</cop><pub>Mdpi</pub><pmid>33921578</pmid><doi>10.3390/ijms22084204</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-1399-7079</orcidid><orcidid>https://orcid.org/0000-0002-6885-4104</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1661-6596 |
ispartof | International journal of molecular sciences, 2021-04, Vol.22 (8), p.4204, Article 4204 |
issn | 1661-6596 1422-0067 1422-0067 |
language | eng |
recordid | cdi_crossref_primary_10_3390_ijms22084204 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Biochemistry & Molecular Biology Chemistry Chemistry, Multidisciplinary Diet Energy metabolism Genes Genomes High fat diet Life Sciences & Biomedicine Lipid metabolism Lipids Metabolic disorders Metabolism microRNA MicroRNAs miRNA Molecular modelling mRNA Muscles Musculoskeletal system network Network analysis Non-coding RNA Nucleotides Obesity Physical Sciences Proteins rabbit Rabbits RNA polymerase Science & Technology Signal transduction Skeletal muscle Stat1 protein Transcription factors Transcriptomes Transfer RNA |
title | Multi-Omics Analysis of Key microRNA-mRNA Metabolic Regulatory Networks in Skeletal Muscle of Obese Rabbits |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-30T02%3A57%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Omics%20Analysis%20of%20Key%20microRNA-mRNA%20Metabolic%20Regulatory%20Networks%20in%20Skeletal%20Muscle%20of%20Obese%20Rabbits&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Li,%20Yanhong&rft.date=2021-04-19&rft.volume=22&rft.issue=8&rft.spage=4204&rft.pages=4204-&rft.artnum=4204&rft.issn=1661-6596&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms22084204&rft_dat=%3Cproquest_cross%3E2520865185%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548646950&rft_id=info:pmid/33921578&rft_doaj_id=oai_doaj_org_article_b5f6c5a78b574ba49362150984a25c43&rfr_iscdi=true |