Multi-Omics Analysis of Key microRNA-mRNA Metabolic Regulatory Networks in Skeletal Muscle of Obese Rabbits

microRNAs (miRNAs), small non-coding RNA with a length of about 22 nucleotides, are involved in the energy metabolism of skeletal muscle cells. However, their molecular mechanism of metabolism in rabbit skeletal muscle is still unclear. In this study, 16 rabbits, 8 in the control group (CON-G) and 8...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2021-04, Vol.22 (8), p.4204, Article 4204
Hauptverfasser: Li, Yanhong, Wang, Jie, Elzo, Mauricio A., Gan, Mingchuan, Tang, Tao, Shao, Jiahao, Lai, Tianfu, Ma, Yuan, Jia, Xianbo, Lai, Songjia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page 4204
container_title International journal of molecular sciences
container_volume 22
creator Li, Yanhong
Wang, Jie
Elzo, Mauricio A.
Gan, Mingchuan
Tang, Tao
Shao, Jiahao
Lai, Tianfu
Ma, Yuan
Jia, Xianbo
Lai, Songjia
description microRNAs (miRNAs), small non-coding RNA with a length of about 22 nucleotides, are involved in the energy metabolism of skeletal muscle cells. However, their molecular mechanism of metabolism in rabbit skeletal muscle is still unclear. In this study, 16 rabbits, 8 in the control group (CON-G) and 8 in the experimental group (HFD-G), were chosen to construct an obese model induced by a high-fat diet fed from 35 to 70 days of age. Subsequently, 54 differentially expressed miRNAs, 248 differentially expressed mRNAs, and 108 differentially expressed proteins related to the metabolism of skeletal muscle were detected and analyzed with three sequencing techniques (small RNA sequencing, transcriptome sequencing, and tandem mass tab (TMT) protein technology). It was found that 12 miRNAs and 12 core genes (e.g., CRYL1, VDAC3 and APIP) were significantly different in skeletal muscle from rabbits in the two groups. The network analysis showed that seven miRNA-mRNA pairs were involved in metabolism. Importantly, two miRNAs (miR-92a-3p and miR-30a/c/d-5p) regulated three transcription factors (MYBL2, STAT1 and IKZF1) that may be essential for lipid metabolism. These results enhance our understanding of molecular mechanisms associated with rabbit skeletal muscle metabolism and provide a basis for future studies in the metabolic diseases of human obesity.
doi_str_mv 10.3390/ijms22084204
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_3390_ijms22084204</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b5f6c5a78b574ba49362150984a25c43</doaj_id><sourcerecordid>2520865185</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-3f234436481aea060de4f9827cce42153b8f97b817954d057613a57e019b3a2a3</originalsourceid><addsrcrecordid>eNqNkktvEzEUhUcIREthxxqNxAYJBvx-bJCiiEdF20gB1pbteIITz7jYHqr8exxSopYVG9u6_nx8r85pmucQvMVYgnd-M2SEgCAIkAfNKSQIdQAw_rCeGYMdo5KdNE9y3gCAMKLycXNSHyJIuThttpdTKL5bDN7mdjbqsMs-t7Fvv7hdW4spLq9m3VCX9tIVbWLwtl269RR0iWnXXrlyE9M2t35sv25dqExoL6dsg9urLIzLrl1qY3zJT5tHvQ7ZPbvdz5rvHz98m3_uLhafzuezi84SLkqHe4QJwYwIqJ0GDKwc6aVA3FpHatvYiF5yIyCXlKwA5QxiTbkDUBqskcZnzflBdxX1Rl0nP-i0U1F79acQ01rpVHxtURnaM0s1F4ZyYjSRmNUfgBREI2oJrlrvD1rXkxncyrqxJB3uid6_Gf0PtY6_lAAcMQmrwKtbgRR_Ti4XNfhsXQh6dHHKCtHqHaNQ0Iq-_AfdxClVT_YUEYwwSUGl3hyo6k3OyfXHZiBQ-0Sou4mo-Iu7AxzhvxGowOsDcONM7LP1brTuiIEapWoGRqKewH4c8f_03BddfBzncRoL_g1XsNCz</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548646950</pqid></control><display><type>article</type><title>Multi-Omics Analysis of Key microRNA-mRNA Metabolic Regulatory Networks in Skeletal Muscle of Obese Rabbits</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Li, Yanhong ; Wang, Jie ; Elzo, Mauricio A. ; Gan, Mingchuan ; Tang, Tao ; Shao, Jiahao ; Lai, Tianfu ; Ma, Yuan ; Jia, Xianbo ; Lai, Songjia</creator><creatorcontrib>Li, Yanhong ; Wang, Jie ; Elzo, Mauricio A. ; Gan, Mingchuan ; Tang, Tao ; Shao, Jiahao ; Lai, Tianfu ; Ma, Yuan ; Jia, Xianbo ; Lai, Songjia</creatorcontrib><description>microRNAs (miRNAs), small non-coding RNA with a length of about 22 nucleotides, are involved in the energy metabolism of skeletal muscle cells. However, their molecular mechanism of metabolism in rabbit skeletal muscle is still unclear. In this study, 16 rabbits, 8 in the control group (CON-G) and 8 in the experimental group (HFD-G), were chosen to construct an obese model induced by a high-fat diet fed from 35 to 70 days of age. Subsequently, 54 differentially expressed miRNAs, 248 differentially expressed mRNAs, and 108 differentially expressed proteins related to the metabolism of skeletal muscle were detected and analyzed with three sequencing techniques (small RNA sequencing, transcriptome sequencing, and tandem mass tab (TMT) protein technology). It was found that 12 miRNAs and 12 core genes (e.g., CRYL1, VDAC3 and APIP) were significantly different in skeletal muscle from rabbits in the two groups. The network analysis showed that seven miRNA-mRNA pairs were involved in metabolism. Importantly, two miRNAs (miR-92a-3p and miR-30a/c/d-5p) regulated three transcription factors (MYBL2, STAT1 and IKZF1) that may be essential for lipid metabolism. These results enhance our understanding of molecular mechanisms associated with rabbit skeletal muscle metabolism and provide a basis for future studies in the metabolic diseases of human obesity.</description><identifier>ISSN: 1661-6596</identifier><identifier>ISSN: 1422-0067</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms22084204</identifier><identifier>PMID: 33921578</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>Biochemistry &amp; Molecular Biology ; Chemistry ; Chemistry, Multidisciplinary ; Diet ; Energy metabolism ; Genes ; Genomes ; High fat diet ; Life Sciences &amp; Biomedicine ; Lipid metabolism ; Lipids ; Metabolic disorders ; Metabolism ; microRNA ; MicroRNAs ; miRNA ; Molecular modelling ; mRNA ; Muscles ; Musculoskeletal system ; network ; Network analysis ; Non-coding RNA ; Nucleotides ; Obesity ; Physical Sciences ; Proteins ; rabbit ; Rabbits ; RNA polymerase ; Science &amp; Technology ; Signal transduction ; Skeletal muscle ; Stat1 protein ; Transcription factors ; Transcriptomes ; Transfer RNA</subject><ispartof>International journal of molecular sciences, 2021-04, Vol.22 (8), p.4204, Article 4204</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>9</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000644332800001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c478t-3f234436481aea060de4f9827cce42153b8f97b817954d057613a57e019b3a2a3</citedby><cites>FETCH-LOGICAL-c478t-3f234436481aea060de4f9827cce42153b8f97b817954d057613a57e019b3a2a3</cites><orcidid>0000-0002-1399-7079 ; 0000-0002-6885-4104</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8072691/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8072691/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,887,27933,27934,39267,53800,53802</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33921578$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Yanhong</creatorcontrib><creatorcontrib>Wang, Jie</creatorcontrib><creatorcontrib>Elzo, Mauricio A.</creatorcontrib><creatorcontrib>Gan, Mingchuan</creatorcontrib><creatorcontrib>Tang, Tao</creatorcontrib><creatorcontrib>Shao, Jiahao</creatorcontrib><creatorcontrib>Lai, Tianfu</creatorcontrib><creatorcontrib>Ma, Yuan</creatorcontrib><creatorcontrib>Jia, Xianbo</creatorcontrib><creatorcontrib>Lai, Songjia</creatorcontrib><title>Multi-Omics Analysis of Key microRNA-mRNA Metabolic Regulatory Networks in Skeletal Muscle of Obese Rabbits</title><title>International journal of molecular sciences</title><addtitle>INT J MOL SCI</addtitle><addtitle>Int J Mol Sci</addtitle><description>microRNAs (miRNAs), small non-coding RNA with a length of about 22 nucleotides, are involved in the energy metabolism of skeletal muscle cells. However, their molecular mechanism of metabolism in rabbit skeletal muscle is still unclear. In this study, 16 rabbits, 8 in the control group (CON-G) and 8 in the experimental group (HFD-G), were chosen to construct an obese model induced by a high-fat diet fed from 35 to 70 days of age. Subsequently, 54 differentially expressed miRNAs, 248 differentially expressed mRNAs, and 108 differentially expressed proteins related to the metabolism of skeletal muscle were detected and analyzed with three sequencing techniques (small RNA sequencing, transcriptome sequencing, and tandem mass tab (TMT) protein technology). It was found that 12 miRNAs and 12 core genes (e.g., CRYL1, VDAC3 and APIP) were significantly different in skeletal muscle from rabbits in the two groups. The network analysis showed that seven miRNA-mRNA pairs were involved in metabolism. Importantly, two miRNAs (miR-92a-3p and miR-30a/c/d-5p) regulated three transcription factors (MYBL2, STAT1 and IKZF1) that may be essential for lipid metabolism. These results enhance our understanding of molecular mechanisms associated with rabbit skeletal muscle metabolism and provide a basis for future studies in the metabolic diseases of human obesity.</description><subject>Biochemistry &amp; Molecular Biology</subject><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Diet</subject><subject>Energy metabolism</subject><subject>Genes</subject><subject>Genomes</subject><subject>High fat diet</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Lipid metabolism</subject><subject>Lipids</subject><subject>Metabolic disorders</subject><subject>Metabolism</subject><subject>microRNA</subject><subject>MicroRNAs</subject><subject>miRNA</subject><subject>Molecular modelling</subject><subject>mRNA</subject><subject>Muscles</subject><subject>Musculoskeletal system</subject><subject>network</subject><subject>Network analysis</subject><subject>Non-coding RNA</subject><subject>Nucleotides</subject><subject>Obesity</subject><subject>Physical Sciences</subject><subject>Proteins</subject><subject>rabbit</subject><subject>Rabbits</subject><subject>RNA polymerase</subject><subject>Science &amp; Technology</subject><subject>Signal transduction</subject><subject>Skeletal muscle</subject><subject>Stat1 protein</subject><subject>Transcription factors</subject><subject>Transcriptomes</subject><subject>Transfer RNA</subject><issn>1661-6596</issn><issn>1422-0067</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><sourceid>DOA</sourceid><recordid>eNqNkktvEzEUhUcIREthxxqNxAYJBvx-bJCiiEdF20gB1pbteIITz7jYHqr8exxSopYVG9u6_nx8r85pmucQvMVYgnd-M2SEgCAIkAfNKSQIdQAw_rCeGYMdo5KdNE9y3gCAMKLycXNSHyJIuThttpdTKL5bDN7mdjbqsMs-t7Fvv7hdW4spLq9m3VCX9tIVbWLwtl269RR0iWnXXrlyE9M2t35sv25dqExoL6dsg9urLIzLrl1qY3zJT5tHvQ7ZPbvdz5rvHz98m3_uLhafzuezi84SLkqHe4QJwYwIqJ0GDKwc6aVA3FpHatvYiF5yIyCXlKwA5QxiTbkDUBqskcZnzflBdxX1Rl0nP-i0U1F79acQ01rpVHxtURnaM0s1F4ZyYjSRmNUfgBREI2oJrlrvD1rXkxncyrqxJB3uid6_Gf0PtY6_lAAcMQmrwKtbgRR_Ti4XNfhsXQh6dHHKCtHqHaNQ0Iq-_AfdxClVT_YUEYwwSUGl3hyo6k3OyfXHZiBQ-0Sou4mo-Iu7AxzhvxGowOsDcONM7LP1brTuiIEapWoGRqKewH4c8f_03BddfBzncRoL_g1XsNCz</recordid><startdate>20210419</startdate><enddate>20210419</enddate><creator>Li, Yanhong</creator><creator>Wang, Jie</creator><creator>Elzo, Mauricio A.</creator><creator>Gan, Mingchuan</creator><creator>Tang, Tao</creator><creator>Shao, Jiahao</creator><creator>Lai, Tianfu</creator><creator>Ma, Yuan</creator><creator>Jia, Xianbo</creator><creator>Lai, Songjia</creator><general>Mdpi</general><general>MDPI AG</general><general>MDPI</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1399-7079</orcidid><orcidid>https://orcid.org/0000-0002-6885-4104</orcidid></search><sort><creationdate>20210419</creationdate><title>Multi-Omics Analysis of Key microRNA-mRNA Metabolic Regulatory Networks in Skeletal Muscle of Obese Rabbits</title><author>Li, Yanhong ; Wang, Jie ; Elzo, Mauricio A. ; Gan, Mingchuan ; Tang, Tao ; Shao, Jiahao ; Lai, Tianfu ; Ma, Yuan ; Jia, Xianbo ; Lai, Songjia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-3f234436481aea060de4f9827cce42153b8f97b817954d057613a57e019b3a2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biochemistry &amp; Molecular Biology</topic><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Diet</topic><topic>Energy metabolism</topic><topic>Genes</topic><topic>Genomes</topic><topic>High fat diet</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Lipid metabolism</topic><topic>Lipids</topic><topic>Metabolic disorders</topic><topic>Metabolism</topic><topic>microRNA</topic><topic>MicroRNAs</topic><topic>miRNA</topic><topic>Molecular modelling</topic><topic>mRNA</topic><topic>Muscles</topic><topic>Musculoskeletal system</topic><topic>network</topic><topic>Network analysis</topic><topic>Non-coding RNA</topic><topic>Nucleotides</topic><topic>Obesity</topic><topic>Physical Sciences</topic><topic>Proteins</topic><topic>rabbit</topic><topic>Rabbits</topic><topic>RNA polymerase</topic><topic>Science &amp; Technology</topic><topic>Signal transduction</topic><topic>Skeletal muscle</topic><topic>Stat1 protein</topic><topic>Transcription factors</topic><topic>Transcriptomes</topic><topic>Transfer RNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yanhong</creatorcontrib><creatorcontrib>Wang, Jie</creatorcontrib><creatorcontrib>Elzo, Mauricio A.</creatorcontrib><creatorcontrib>Gan, Mingchuan</creatorcontrib><creatorcontrib>Tang, Tao</creatorcontrib><creatorcontrib>Shao, Jiahao</creatorcontrib><creatorcontrib>Lai, Tianfu</creatorcontrib><creatorcontrib>Ma, Yuan</creatorcontrib><creatorcontrib>Jia, Xianbo</creatorcontrib><creatorcontrib>Lai, Songjia</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yanhong</au><au>Wang, Jie</au><au>Elzo, Mauricio A.</au><au>Gan, Mingchuan</au><au>Tang, Tao</au><au>Shao, Jiahao</au><au>Lai, Tianfu</au><au>Ma, Yuan</au><au>Jia, Xianbo</au><au>Lai, Songjia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Omics Analysis of Key microRNA-mRNA Metabolic Regulatory Networks in Skeletal Muscle of Obese Rabbits</atitle><jtitle>International journal of molecular sciences</jtitle><stitle>INT J MOL SCI</stitle><addtitle>Int J Mol Sci</addtitle><date>2021-04-19</date><risdate>2021</risdate><volume>22</volume><issue>8</issue><spage>4204</spage><pages>4204-</pages><artnum>4204</artnum><issn>1661-6596</issn><issn>1422-0067</issn><eissn>1422-0067</eissn><abstract>microRNAs (miRNAs), small non-coding RNA with a length of about 22 nucleotides, are involved in the energy metabolism of skeletal muscle cells. However, their molecular mechanism of metabolism in rabbit skeletal muscle is still unclear. In this study, 16 rabbits, 8 in the control group (CON-G) and 8 in the experimental group (HFD-G), were chosen to construct an obese model induced by a high-fat diet fed from 35 to 70 days of age. Subsequently, 54 differentially expressed miRNAs, 248 differentially expressed mRNAs, and 108 differentially expressed proteins related to the metabolism of skeletal muscle were detected and analyzed with three sequencing techniques (small RNA sequencing, transcriptome sequencing, and tandem mass tab (TMT) protein technology). It was found that 12 miRNAs and 12 core genes (e.g., CRYL1, VDAC3 and APIP) were significantly different in skeletal muscle from rabbits in the two groups. The network analysis showed that seven miRNA-mRNA pairs were involved in metabolism. Importantly, two miRNAs (miR-92a-3p and miR-30a/c/d-5p) regulated three transcription factors (MYBL2, STAT1 and IKZF1) that may be essential for lipid metabolism. These results enhance our understanding of molecular mechanisms associated with rabbit skeletal muscle metabolism and provide a basis for future studies in the metabolic diseases of human obesity.</abstract><cop>BASEL</cop><pub>Mdpi</pub><pmid>33921578</pmid><doi>10.3390/ijms22084204</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-1399-7079</orcidid><orcidid>https://orcid.org/0000-0002-6885-4104</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1661-6596
ispartof International journal of molecular sciences, 2021-04, Vol.22 (8), p.4204, Article 4204
issn 1661-6596
1422-0067
1422-0067
language eng
recordid cdi_crossref_primary_10_3390_ijms22084204
source MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Biochemistry & Molecular Biology
Chemistry
Chemistry, Multidisciplinary
Diet
Energy metabolism
Genes
Genomes
High fat diet
Life Sciences & Biomedicine
Lipid metabolism
Lipids
Metabolic disorders
Metabolism
microRNA
MicroRNAs
miRNA
Molecular modelling
mRNA
Muscles
Musculoskeletal system
network
Network analysis
Non-coding RNA
Nucleotides
Obesity
Physical Sciences
Proteins
rabbit
Rabbits
RNA polymerase
Science & Technology
Signal transduction
Skeletal muscle
Stat1 protein
Transcription factors
Transcriptomes
Transfer RNA
title Multi-Omics Analysis of Key microRNA-mRNA Metabolic Regulatory Networks in Skeletal Muscle of Obese Rabbits
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-30T02%3A57%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Omics%20Analysis%20of%20Key%20microRNA-mRNA%20Metabolic%20Regulatory%20Networks%20in%20Skeletal%20Muscle%20of%20Obese%20Rabbits&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Li,%20Yanhong&rft.date=2021-04-19&rft.volume=22&rft.issue=8&rft.spage=4204&rft.pages=4204-&rft.artnum=4204&rft.issn=1661-6596&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms22084204&rft_dat=%3Cproquest_cross%3E2520865185%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548646950&rft_id=info:pmid/33921578&rft_doaj_id=oai_doaj_org_article_b5f6c5a78b574ba49362150984a25c43&rfr_iscdi=true