Expanding Role of Dopaminergic Inhibition in Hypercapnic Responses of Cultured Rat Carotid Body Cells: Involvement of Type II Glial Cells
Dopamine (DA) is a well-studied neurochemical in the mammalian carotid body (CB), a chemosensory organ involved in O and CO /H homeostasis. DA released from receptor (type I) cells during chemostimulation is predominantly inhibitory, acting via pre- and post-synaptic dopamine D2 receptors (D2R) on t...
Gespeichert in:
Veröffentlicht in: | International journal of molecular sciences 2020-07, Vol.21 (15), p.5434 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 15 |
container_start_page | 5434 |
container_title | International journal of molecular sciences |
container_volume | 21 |
creator | Leonard, Erin M Nurse, Colin A |
description | Dopamine (DA) is a well-studied neurochemical in the mammalian carotid body (CB), a chemosensory organ involved in O
and CO
/H
homeostasis. DA released from receptor (type I) cells during chemostimulation is predominantly inhibitory, acting via pre- and post-synaptic dopamine D2 receptors (D2R) on type I cells and afferent (petrosal) terminals respectively. By contrast, co-released ATP is excitatory at postsynaptic P2X2/3R, though paracrine P2Y2R activation of neighboring glial-like type II cells may boost further ATP release. Here, we tested the hypothesis that DA may also inhibit type II cell function. When applied alone, DA (10 μM) had negligible effects on basal [Ca
]
in isolated rat type II cells. However, DA strongly inhibited [Ca
]
elevations (Δ[Ca
) evoked by the P2Y2R agonist UTP (100 μM), an effect opposed by the D2/3R antagonist, sulpiride (1-10 μM). As expected, acute hypercapnia (10% CO
; pH 7.4), or high K
(30 mM) caused Δ[Ca
]
in type I cells. However, these stimuli sometimes triggered a secondary, delayed Δ[Ca
]
in nearby type II cells, attributable to crosstalk involving ATP-P2Y2R interactions. Interestingly sulpiride, or DA store-depletion using reserpine, potentiated both the frequency and magnitude of the secondary Δ[Ca
]
in type II cells. In functional CB-petrosal neuron cocultures, sulpiride potentiated hypercapnia-induced Δ[Ca
]
in type I cells, type II cells, and petrosal neurons. Moreover, stimulation of type II cells with UTP could directly evoke Δ[Ca
]
in nearby petrosal neurons. Thus, dopaminergic inhibition of purinergic signalling in type II cells may help control the integrated sensory output of the CB during hypercapnia. |
doi_str_mv | 10.3390/ijms21155434 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_crossref_primary_10_3390_ijms21155434</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2430266742</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-fdc5c800468aaa838aa56983c15437d38fc5f2b9488395371a045d27e8f9993</originalsourceid><addsrcrecordid>eNpVkctKAzEYRoMo3neuJeDWaq5zcSHoeCsIQnUf0kympmSSMZkp9hF8a1OqUjdJ4D85-cgHwAlGF5SW6NLM20gw5pxRtgX2MSNkhFCWb2-c98BBjHOECCW83AV7lOQc54jug6_7z0662rgZnHiroW_gne9ka5wOM6Pg2L2bqemNd9A4-LTsdFCyc2ky0bHzLuq4ulMNth-CruFE9rCSwfemhre-XsJKWxuvkmfh7UK32vUr_i2J4HgMH62Rds0cgZ1G2qiPf_ZD8Ppw_1Y9jZ5fHsfVzfNIMUz6UVMrrgqEWFZIKQuaVp6VBVU4fUBe06JRvCHTkhUFLTnNsUSM1yTXRVOWJT0E12trN0xbXauUJ0grumBaGZbCSyP-T5x5FzO_EDmjhGZZEpz9CIL_GHTsxdwPwaXEgjCKSJbljCTqfE2p4GMMuvl7ASOxqk1s1pbw081Uf_BvT_QbiuOUxw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2430266742</pqid></control><display><type>article</type><title>Expanding Role of Dopaminergic Inhibition in Hypercapnic Responses of Cultured Rat Carotid Body Cells: Involvement of Type II Glial Cells</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Leonard, Erin M ; Nurse, Colin A</creator><creatorcontrib>Leonard, Erin M ; Nurse, Colin A</creatorcontrib><description>Dopamine (DA) is a well-studied neurochemical in the mammalian carotid body (CB), a chemosensory organ involved in O
and CO
/H
homeostasis. DA released from receptor (type I) cells during chemostimulation is predominantly inhibitory, acting via pre- and post-synaptic dopamine D2 receptors (D2R) on type I cells and afferent (petrosal) terminals respectively. By contrast, co-released ATP is excitatory at postsynaptic P2X2/3R, though paracrine P2Y2R activation of neighboring glial-like type II cells may boost further ATP release. Here, we tested the hypothesis that DA may also inhibit type II cell function. When applied alone, DA (10 μM) had negligible effects on basal [Ca
]
in isolated rat type II cells. However, DA strongly inhibited [Ca
]
elevations (Δ[Ca
) evoked by the P2Y2R agonist UTP (100 μM), an effect opposed by the D2/3R antagonist, sulpiride (1-10 μM). As expected, acute hypercapnia (10% CO
; pH 7.4), or high K
(30 mM) caused Δ[Ca
]
in type I cells. However, these stimuli sometimes triggered a secondary, delayed Δ[Ca
]
in nearby type II cells, attributable to crosstalk involving ATP-P2Y2R interactions. Interestingly sulpiride, or DA store-depletion using reserpine, potentiated both the frequency and magnitude of the secondary Δ[Ca
]
in type II cells. In functional CB-petrosal neuron cocultures, sulpiride potentiated hypercapnia-induced Δ[Ca
]
in type I cells, type II cells, and petrosal neurons. Moreover, stimulation of type II cells with UTP could directly evoke Δ[Ca
]
in nearby petrosal neurons. Thus, dopaminergic inhibition of purinergic signalling in type II cells may help control the integrated sensory output of the CB during hypercapnia.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms21155434</identifier><identifier>PMID: 32751703</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Adenosine Triphosphate - metabolism ; Animals ; Calcium ; Calcium (intracellular) ; Calcium - metabolism ; Calcium ions ; Calcium Signaling - drug effects ; Carbon dioxide ; Carbon Dioxide - metabolism ; Carotid body ; Carotid Body - drug effects ; Carotid Body - growth & development ; Carotid Body - metabolism ; Chemoreception ; Crosstalk ; Depletion ; Dopamine ; Dopamine - metabolism ; Dopamine D2 receptors ; Glial cells ; Homeostasis ; Homeostasis - genetics ; Hydrogen - metabolism ; Hypercapnia ; Hypoxia ; Mammals ; Neuronal-glial interactions ; Neurons ; Neurotransmitters ; Oxygen - metabolism ; Paracrine signalling ; Physiology ; Purinergic P2Y Receptor Agonists - pharmacology ; Rats ; Receptors, Dopamine D2 - genetics ; Receptors, Purinergic P2Y2 - genetics ; Reserpine ; Sensory neurons ; Signal Transduction - drug effects ; Sulpiride ; Sulpiride - pharmacology ; Uridine Triphosphate - pharmacology</subject><ispartof>International journal of molecular sciences, 2020-07, Vol.21 (15), p.5434</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-fdc5c800468aaa838aa56983c15437d38fc5f2b9488395371a045d27e8f9993</citedby><cites>FETCH-LOGICAL-c412t-fdc5c800468aaa838aa56983c15437d38fc5f2b9488395371a045d27e8f9993</cites><orcidid>0000-0002-9514-858X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7432366/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7432366/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32751703$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Leonard, Erin M</creatorcontrib><creatorcontrib>Nurse, Colin A</creatorcontrib><title>Expanding Role of Dopaminergic Inhibition in Hypercapnic Responses of Cultured Rat Carotid Body Cells: Involvement of Type II Glial Cells</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>Dopamine (DA) is a well-studied neurochemical in the mammalian carotid body (CB), a chemosensory organ involved in O
and CO
/H
homeostasis. DA released from receptor (type I) cells during chemostimulation is predominantly inhibitory, acting via pre- and post-synaptic dopamine D2 receptors (D2R) on type I cells and afferent (petrosal) terminals respectively. By contrast, co-released ATP is excitatory at postsynaptic P2X2/3R, though paracrine P2Y2R activation of neighboring glial-like type II cells may boost further ATP release. Here, we tested the hypothesis that DA may also inhibit type II cell function. When applied alone, DA (10 μM) had negligible effects on basal [Ca
]
in isolated rat type II cells. However, DA strongly inhibited [Ca
]
elevations (Δ[Ca
) evoked by the P2Y2R agonist UTP (100 μM), an effect opposed by the D2/3R antagonist, sulpiride (1-10 μM). As expected, acute hypercapnia (10% CO
; pH 7.4), or high K
(30 mM) caused Δ[Ca
]
in type I cells. However, these stimuli sometimes triggered a secondary, delayed Δ[Ca
]
in nearby type II cells, attributable to crosstalk involving ATP-P2Y2R interactions. Interestingly sulpiride, or DA store-depletion using reserpine, potentiated both the frequency and magnitude of the secondary Δ[Ca
]
in type II cells. In functional CB-petrosal neuron cocultures, sulpiride potentiated hypercapnia-induced Δ[Ca
]
in type I cells, type II cells, and petrosal neurons. Moreover, stimulation of type II cells with UTP could directly evoke Δ[Ca
]
in nearby petrosal neurons. Thus, dopaminergic inhibition of purinergic signalling in type II cells may help control the integrated sensory output of the CB during hypercapnia.</description><subject>Adenosine Triphosphate - metabolism</subject><subject>Animals</subject><subject>Calcium</subject><subject>Calcium (intracellular)</subject><subject>Calcium - metabolism</subject><subject>Calcium ions</subject><subject>Calcium Signaling - drug effects</subject><subject>Carbon dioxide</subject><subject>Carbon Dioxide - metabolism</subject><subject>Carotid body</subject><subject>Carotid Body - drug effects</subject><subject>Carotid Body - growth & development</subject><subject>Carotid Body - metabolism</subject><subject>Chemoreception</subject><subject>Crosstalk</subject><subject>Depletion</subject><subject>Dopamine</subject><subject>Dopamine - metabolism</subject><subject>Dopamine D2 receptors</subject><subject>Glial cells</subject><subject>Homeostasis</subject><subject>Homeostasis - genetics</subject><subject>Hydrogen - metabolism</subject><subject>Hypercapnia</subject><subject>Hypoxia</subject><subject>Mammals</subject><subject>Neuronal-glial interactions</subject><subject>Neurons</subject><subject>Neurotransmitters</subject><subject>Oxygen - metabolism</subject><subject>Paracrine signalling</subject><subject>Physiology</subject><subject>Purinergic P2Y Receptor Agonists - pharmacology</subject><subject>Rats</subject><subject>Receptors, Dopamine D2 - genetics</subject><subject>Receptors, Purinergic P2Y2 - genetics</subject><subject>Reserpine</subject><subject>Sensory neurons</subject><subject>Signal Transduction - drug effects</subject><subject>Sulpiride</subject><subject>Sulpiride - pharmacology</subject><subject>Uridine Triphosphate - pharmacology</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpVkctKAzEYRoMo3neuJeDWaq5zcSHoeCsIQnUf0kympmSSMZkp9hF8a1OqUjdJ4D85-cgHwAlGF5SW6NLM20gw5pxRtgX2MSNkhFCWb2-c98BBjHOECCW83AV7lOQc54jug6_7z0662rgZnHiroW_gne9ka5wOM6Pg2L2bqemNd9A4-LTsdFCyc2ky0bHzLuq4ulMNth-CruFE9rCSwfemhre-XsJKWxuvkmfh7UK32vUr_i2J4HgMH62Rds0cgZ1G2qiPf_ZD8Ppw_1Y9jZ5fHsfVzfNIMUz6UVMrrgqEWFZIKQuaVp6VBVU4fUBe06JRvCHTkhUFLTnNsUSM1yTXRVOWJT0E12trN0xbXauUJ0grumBaGZbCSyP-T5x5FzO_EDmjhGZZEpz9CIL_GHTsxdwPwaXEgjCKSJbljCTqfE2p4GMMuvl7ASOxqk1s1pbw081Uf_BvT_QbiuOUxw</recordid><startdate>20200730</startdate><enddate>20200730</enddate><creator>Leonard, Erin M</creator><creator>Nurse, Colin A</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9514-858X</orcidid></search><sort><creationdate>20200730</creationdate><title>Expanding Role of Dopaminergic Inhibition in Hypercapnic Responses of Cultured Rat Carotid Body Cells: Involvement of Type II Glial Cells</title><author>Leonard, Erin M ; Nurse, Colin A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-fdc5c800468aaa838aa56983c15437d38fc5f2b9488395371a045d27e8f9993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adenosine Triphosphate - metabolism</topic><topic>Animals</topic><topic>Calcium</topic><topic>Calcium (intracellular)</topic><topic>Calcium - metabolism</topic><topic>Calcium ions</topic><topic>Calcium Signaling - drug effects</topic><topic>Carbon dioxide</topic><topic>Carbon Dioxide - metabolism</topic><topic>Carotid body</topic><topic>Carotid Body - drug effects</topic><topic>Carotid Body - growth & development</topic><topic>Carotid Body - metabolism</topic><topic>Chemoreception</topic><topic>Crosstalk</topic><topic>Depletion</topic><topic>Dopamine</topic><topic>Dopamine - metabolism</topic><topic>Dopamine D2 receptors</topic><topic>Glial cells</topic><topic>Homeostasis</topic><topic>Homeostasis - genetics</topic><topic>Hydrogen - metabolism</topic><topic>Hypercapnia</topic><topic>Hypoxia</topic><topic>Mammals</topic><topic>Neuronal-glial interactions</topic><topic>Neurons</topic><topic>Neurotransmitters</topic><topic>Oxygen - metabolism</topic><topic>Paracrine signalling</topic><topic>Physiology</topic><topic>Purinergic P2Y Receptor Agonists - pharmacology</topic><topic>Rats</topic><topic>Receptors, Dopamine D2 - genetics</topic><topic>Receptors, Purinergic P2Y2 - genetics</topic><topic>Reserpine</topic><topic>Sensory neurons</topic><topic>Signal Transduction - drug effects</topic><topic>Sulpiride</topic><topic>Sulpiride - pharmacology</topic><topic>Uridine Triphosphate - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leonard, Erin M</creatorcontrib><creatorcontrib>Nurse, Colin A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leonard, Erin M</au><au>Nurse, Colin A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Expanding Role of Dopaminergic Inhibition in Hypercapnic Responses of Cultured Rat Carotid Body Cells: Involvement of Type II Glial Cells</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2020-07-30</date><risdate>2020</risdate><volume>21</volume><issue>15</issue><spage>5434</spage><pages>5434-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>Dopamine (DA) is a well-studied neurochemical in the mammalian carotid body (CB), a chemosensory organ involved in O
and CO
/H
homeostasis. DA released from receptor (type I) cells during chemostimulation is predominantly inhibitory, acting via pre- and post-synaptic dopamine D2 receptors (D2R) on type I cells and afferent (petrosal) terminals respectively. By contrast, co-released ATP is excitatory at postsynaptic P2X2/3R, though paracrine P2Y2R activation of neighboring glial-like type II cells may boost further ATP release. Here, we tested the hypothesis that DA may also inhibit type II cell function. When applied alone, DA (10 μM) had negligible effects on basal [Ca
]
in isolated rat type II cells. However, DA strongly inhibited [Ca
]
elevations (Δ[Ca
) evoked by the P2Y2R agonist UTP (100 μM), an effect opposed by the D2/3R antagonist, sulpiride (1-10 μM). As expected, acute hypercapnia (10% CO
; pH 7.4), or high K
(30 mM) caused Δ[Ca
]
in type I cells. However, these stimuli sometimes triggered a secondary, delayed Δ[Ca
]
in nearby type II cells, attributable to crosstalk involving ATP-P2Y2R interactions. Interestingly sulpiride, or DA store-depletion using reserpine, potentiated both the frequency and magnitude of the secondary Δ[Ca
]
in type II cells. In functional CB-petrosal neuron cocultures, sulpiride potentiated hypercapnia-induced Δ[Ca
]
in type I cells, type II cells, and petrosal neurons. Moreover, stimulation of type II cells with UTP could directly evoke Δ[Ca
]
in nearby petrosal neurons. Thus, dopaminergic inhibition of purinergic signalling in type II cells may help control the integrated sensory output of the CB during hypercapnia.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>32751703</pmid><doi>10.3390/ijms21155434</doi><orcidid>https://orcid.org/0000-0002-9514-858X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1422-0067 |
ispartof | International journal of molecular sciences, 2020-07, Vol.21 (15), p.5434 |
issn | 1422-0067 1661-6596 1422-0067 |
language | eng |
recordid | cdi_crossref_primary_10_3390_ijms21155434 |
source | MDPI - Multidisciplinary Digital Publishing Institute; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Adenosine Triphosphate - metabolism Animals Calcium Calcium (intracellular) Calcium - metabolism Calcium ions Calcium Signaling - drug effects Carbon dioxide Carbon Dioxide - metabolism Carotid body Carotid Body - drug effects Carotid Body - growth & development Carotid Body - metabolism Chemoreception Crosstalk Depletion Dopamine Dopamine - metabolism Dopamine D2 receptors Glial cells Homeostasis Homeostasis - genetics Hydrogen - metabolism Hypercapnia Hypoxia Mammals Neuronal-glial interactions Neurons Neurotransmitters Oxygen - metabolism Paracrine signalling Physiology Purinergic P2Y Receptor Agonists - pharmacology Rats Receptors, Dopamine D2 - genetics Receptors, Purinergic P2Y2 - genetics Reserpine Sensory neurons Signal Transduction - drug effects Sulpiride Sulpiride - pharmacology Uridine Triphosphate - pharmacology |
title | Expanding Role of Dopaminergic Inhibition in Hypercapnic Responses of Cultured Rat Carotid Body Cells: Involvement of Type II Glial Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A01%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Expanding%20Role%20of%20Dopaminergic%20Inhibition%20in%20Hypercapnic%20Responses%20of%20Cultured%20Rat%20Carotid%20Body%20Cells:%20Involvement%20of%20Type%20II%20Glial%20Cells&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Leonard,%20Erin%20M&rft.date=2020-07-30&rft.volume=21&rft.issue=15&rft.spage=5434&rft.pages=5434-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms21155434&rft_dat=%3Cproquest_pubme%3E2430266742%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2430266742&rft_id=info:pmid/32751703&rfr_iscdi=true |