A Deep Learning Approach to Urban Street Functionality Prediction Based on Centrality Measures and Stacked Denoising Autoencoder
In urban planning and transportation management, the centrality characteristics of urban streets are vital measures to consider. Centrality can help in understanding the structural properties of dense traffic networks that affect both human life and activity in cities. Many cities classify urban str...
Gespeichert in:
Veröffentlicht in: | ISPRS international journal of geo-information 2020-07, Vol.9 (7), p.456 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | 456 |
container_title | ISPRS international journal of geo-information |
container_volume | 9 |
creator | Noori, Fatemeh Kamangir, Hamid A. King, Scott Sheta, Alaa Pashaei, Mohammad SheikhMohammadZadeh, Abbas |
description | In urban planning and transportation management, the centrality characteristics of urban streets are vital measures to consider. Centrality can help in understanding the structural properties of dense traffic networks that affect both human life and activity in cities. Many cities classify urban streets to provide stakeholders with a group of street guidelines for possible new rehabilitation such as sidewalks, curbs, and setbacks. Transportation research always considers street networks as a connection between different urban areas. The street functionality classification defines the role of each element of the urban street network (USN). Some potential factors such as land use mix, accessible service, design goal, and administrators’ policies can affect the movement pattern of urban travelers. In this study, nine centrality measures are used to classify the urban roads in four cities evaluating the structural importance of street segments. In our work, a Stacked Denoising Autoencoder (SDAE) predicts a street’s functionality, then logistic regression is used as a classifier. Our proposed classifier can differentiate between four different classes adopted from the U.S. Department of Transportation (USDT): principal arterial road, minor arterial road, collector road, and local road. The SDAE-based model showed that regular grid configurations with repeated patterns are more influential in forming the functionality of road networks compared to those with less regularity in their spatial structure. |
doi_str_mv | 10.3390/ijgi9070456 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_crossref_primary_10_3390_ijgi9070456</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_61d454b8b0c84e0891e39f05602aa504</doaj_id><sourcerecordid>2426757625</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-71135e7a646b491206967aea20d06f3eb407bbe6494e45a7018f844afe0f734a3</originalsourceid><addsrcrecordid>eNpNUcFuEzEQXSGQqNqe-AFLHFFgbM_a62NIKVQKAgl6tmZ3Z4NDsIPtPfTGp7MkqOpc5s3M03vSm6Z5JeGt1g7ehf0uOLCArXnWXCilYOWcwedP8MvmupQ9LOWk7hAumj9rccN8FFumHEPcifXxmBMNP0RN4j73FMW3mpmruJ3jUEOKdAj1QXzNPIbTLN5T4VEsYMOx5vP5M1OZMxdBcVwEaPi5UG44plBOJnNNHIc0cr5qXkx0KHz9v18297cfvm8-rbZfPt5t1tvVoA3WlZVSt2zJoOnRSQXGGUtMCkYwk-YewfY9G3TI2JIF2U0dIk0Mk9VI-rK5O-uOifb-mMMvyg8-UfCnRco7T7mG4cDeyBFb7Lsehg4ZOidZuwlaA4qoBVy0Xp-1lqh-z1yq36c5L8kUr1AZ21qj2oX15swaciol8_ToKsH_-5h_8jH9FxwviIQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2426757625</pqid></control><display><type>article</type><title>A Deep Learning Approach to Urban Street Functionality Prediction Based on Centrality Measures and Stacked Denoising Autoencoder</title><source>DOAJ Directory of Open Access Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Noori, Fatemeh ; Kamangir, Hamid ; A. King, Scott ; Sheta, Alaa ; Pashaei, Mohammad ; SheikhMohammadZadeh, Abbas</creator><creatorcontrib>Noori, Fatemeh ; Kamangir, Hamid ; A. King, Scott ; Sheta, Alaa ; Pashaei, Mohammad ; SheikhMohammadZadeh, Abbas</creatorcontrib><description>In urban planning and transportation management, the centrality characteristics of urban streets are vital measures to consider. Centrality can help in understanding the structural properties of dense traffic networks that affect both human life and activity in cities. Many cities classify urban streets to provide stakeholders with a group of street guidelines for possible new rehabilitation such as sidewalks, curbs, and setbacks. Transportation research always considers street networks as a connection between different urban areas. The street functionality classification defines the role of each element of the urban street network (USN). Some potential factors such as land use mix, accessible service, design goal, and administrators’ policies can affect the movement pattern of urban travelers. In this study, nine centrality measures are used to classify the urban roads in four cities evaluating the structural importance of street segments. In our work, a Stacked Denoising Autoencoder (SDAE) predicts a street’s functionality, then logistic regression is used as a classifier. Our proposed classifier can differentiate between four different classes adopted from the U.S. Department of Transportation (USDT): principal arterial road, minor arterial road, collector road, and local road. The SDAE-based model showed that regular grid configurations with repeated patterns are more influential in forming the functionality of road networks compared to those with less regularity in their spatial structure.</description><identifier>ISSN: 2220-9964</identifier><identifier>EISSN: 2220-9964</identifier><identifier>DOI: 10.3390/ijgi9070456</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Back propagation ; centrality measures ; Cities ; Classification ; Classifiers ; Deep learning ; Design ; Federal agencies ; Land use ; Local movements ; Machine learning ; Neural networks ; Noise reduction ; Rehabilitation ; Roads ; Roads & highways ; Semantics ; stacked denoising autoencoder ; street functionality classification ; Streets ; Support vector machines ; Traffic flow ; Transportation management ; Transportation networks ; Transportation planning ; Urban areas ; Urban planning ; urban transportation network ; Walkways</subject><ispartof>ISPRS international journal of geo-information, 2020-07, Vol.9 (7), p.456</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-71135e7a646b491206967aea20d06f3eb407bbe6494e45a7018f844afe0f734a3</citedby><cites>FETCH-LOGICAL-c364t-71135e7a646b491206967aea20d06f3eb407bbe6494e45a7018f844afe0f734a3</cites><orcidid>0000-0002-1427-6265 ; 0000-0002-3727-6276 ; 0000-0002-4022-0388</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2102,27924,27925</link.rule.ids></links><search><creatorcontrib>Noori, Fatemeh</creatorcontrib><creatorcontrib>Kamangir, Hamid</creatorcontrib><creatorcontrib>A. King, Scott</creatorcontrib><creatorcontrib>Sheta, Alaa</creatorcontrib><creatorcontrib>Pashaei, Mohammad</creatorcontrib><creatorcontrib>SheikhMohammadZadeh, Abbas</creatorcontrib><title>A Deep Learning Approach to Urban Street Functionality Prediction Based on Centrality Measures and Stacked Denoising Autoencoder</title><title>ISPRS international journal of geo-information</title><description>In urban planning and transportation management, the centrality characteristics of urban streets are vital measures to consider. Centrality can help in understanding the structural properties of dense traffic networks that affect both human life and activity in cities. Many cities classify urban streets to provide stakeholders with a group of street guidelines for possible new rehabilitation such as sidewalks, curbs, and setbacks. Transportation research always considers street networks as a connection between different urban areas. The street functionality classification defines the role of each element of the urban street network (USN). Some potential factors such as land use mix, accessible service, design goal, and administrators’ policies can affect the movement pattern of urban travelers. In this study, nine centrality measures are used to classify the urban roads in four cities evaluating the structural importance of street segments. In our work, a Stacked Denoising Autoencoder (SDAE) predicts a street’s functionality, then logistic regression is used as a classifier. Our proposed classifier can differentiate between four different classes adopted from the U.S. Department of Transportation (USDT): principal arterial road, minor arterial road, collector road, and local road. The SDAE-based model showed that regular grid configurations with repeated patterns are more influential in forming the functionality of road networks compared to those with less regularity in their spatial structure.</description><subject>Back propagation</subject><subject>centrality measures</subject><subject>Cities</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Deep learning</subject><subject>Design</subject><subject>Federal agencies</subject><subject>Land use</subject><subject>Local movements</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Noise reduction</subject><subject>Rehabilitation</subject><subject>Roads</subject><subject>Roads & highways</subject><subject>Semantics</subject><subject>stacked denoising autoencoder</subject><subject>street functionality classification</subject><subject>Streets</subject><subject>Support vector machines</subject><subject>Traffic flow</subject><subject>Transportation management</subject><subject>Transportation networks</subject><subject>Transportation planning</subject><subject>Urban areas</subject><subject>Urban planning</subject><subject>urban transportation network</subject><subject>Walkways</subject><issn>2220-9964</issn><issn>2220-9964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFuEzEQXSGQqNqe-AFLHFFgbM_a62NIKVQKAgl6tmZ3Z4NDsIPtPfTGp7MkqOpc5s3M03vSm6Z5JeGt1g7ehf0uOLCArXnWXCilYOWcwedP8MvmupQ9LOWk7hAumj9rccN8FFumHEPcifXxmBMNP0RN4j73FMW3mpmruJ3jUEOKdAj1QXzNPIbTLN5T4VEsYMOx5vP5M1OZMxdBcVwEaPi5UG44plBOJnNNHIc0cr5qXkx0KHz9v18297cfvm8-rbZfPt5t1tvVoA3WlZVSt2zJoOnRSQXGGUtMCkYwk-YewfY9G3TI2JIF2U0dIk0Mk9VI-rK5O-uOifb-mMMvyg8-UfCnRco7T7mG4cDeyBFb7Lsehg4ZOidZuwlaA4qoBVy0Xp-1lqh-z1yq36c5L8kUr1AZ21qj2oX15swaciol8_ToKsH_-5h_8jH9FxwviIQ</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Noori, Fatemeh</creator><creator>Kamangir, Hamid</creator><creator>A. King, Scott</creator><creator>Sheta, Alaa</creator><creator>Pashaei, Mohammad</creator><creator>SheikhMohammadZadeh, Abbas</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1427-6265</orcidid><orcidid>https://orcid.org/0000-0002-3727-6276</orcidid><orcidid>https://orcid.org/0000-0002-4022-0388</orcidid></search><sort><creationdate>20200701</creationdate><title>A Deep Learning Approach to Urban Street Functionality Prediction Based on Centrality Measures and Stacked Denoising Autoencoder</title><author>Noori, Fatemeh ; Kamangir, Hamid ; A. King, Scott ; Sheta, Alaa ; Pashaei, Mohammad ; SheikhMohammadZadeh, Abbas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-71135e7a646b491206967aea20d06f3eb407bbe6494e45a7018f844afe0f734a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Back propagation</topic><topic>centrality measures</topic><topic>Cities</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Deep learning</topic><topic>Design</topic><topic>Federal agencies</topic><topic>Land use</topic><topic>Local movements</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Noise reduction</topic><topic>Rehabilitation</topic><topic>Roads</topic><topic>Roads & highways</topic><topic>Semantics</topic><topic>stacked denoising autoencoder</topic><topic>street functionality classification</topic><topic>Streets</topic><topic>Support vector machines</topic><topic>Traffic flow</topic><topic>Transportation management</topic><topic>Transportation networks</topic><topic>Transportation planning</topic><topic>Urban areas</topic><topic>Urban planning</topic><topic>urban transportation network</topic><topic>Walkways</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Noori, Fatemeh</creatorcontrib><creatorcontrib>Kamangir, Hamid</creatorcontrib><creatorcontrib>A. King, Scott</creatorcontrib><creatorcontrib>Sheta, Alaa</creatorcontrib><creatorcontrib>Pashaei, Mohammad</creatorcontrib><creatorcontrib>SheikhMohammadZadeh, Abbas</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>ISPRS international journal of geo-information</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Noori, Fatemeh</au><au>Kamangir, Hamid</au><au>A. King, Scott</au><au>Sheta, Alaa</au><au>Pashaei, Mohammad</au><au>SheikhMohammadZadeh, Abbas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Deep Learning Approach to Urban Street Functionality Prediction Based on Centrality Measures and Stacked Denoising Autoencoder</atitle><jtitle>ISPRS international journal of geo-information</jtitle><date>2020-07-01</date><risdate>2020</risdate><volume>9</volume><issue>7</issue><spage>456</spage><pages>456-</pages><issn>2220-9964</issn><eissn>2220-9964</eissn><abstract>In urban planning and transportation management, the centrality characteristics of urban streets are vital measures to consider. Centrality can help in understanding the structural properties of dense traffic networks that affect both human life and activity in cities. Many cities classify urban streets to provide stakeholders with a group of street guidelines for possible new rehabilitation such as sidewalks, curbs, and setbacks. Transportation research always considers street networks as a connection between different urban areas. The street functionality classification defines the role of each element of the urban street network (USN). Some potential factors such as land use mix, accessible service, design goal, and administrators’ policies can affect the movement pattern of urban travelers. In this study, nine centrality measures are used to classify the urban roads in four cities evaluating the structural importance of street segments. In our work, a Stacked Denoising Autoencoder (SDAE) predicts a street’s functionality, then logistic regression is used as a classifier. Our proposed classifier can differentiate between four different classes adopted from the U.S. Department of Transportation (USDT): principal arterial road, minor arterial road, collector road, and local road. The SDAE-based model showed that regular grid configurations with repeated patterns are more influential in forming the functionality of road networks compared to those with less regularity in their spatial structure.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/ijgi9070456</doi><orcidid>https://orcid.org/0000-0002-1427-6265</orcidid><orcidid>https://orcid.org/0000-0002-3727-6276</orcidid><orcidid>https://orcid.org/0000-0002-4022-0388</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2220-9964 |
ispartof | ISPRS international journal of geo-information, 2020-07, Vol.9 (7), p.456 |
issn | 2220-9964 2220-9964 |
language | eng |
recordid | cdi_crossref_primary_10_3390_ijgi9070456 |
source | DOAJ Directory of Open Access Journals; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals |
subjects | Back propagation centrality measures Cities Classification Classifiers Deep learning Design Federal agencies Land use Local movements Machine learning Neural networks Noise reduction Rehabilitation Roads Roads & highways Semantics stacked denoising autoencoder street functionality classification Streets Support vector machines Traffic flow Transportation management Transportation networks Transportation planning Urban areas Urban planning urban transportation network Walkways |
title | A Deep Learning Approach to Urban Street Functionality Prediction Based on Centrality Measures and Stacked Denoising Autoencoder |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T04%3A27%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Deep%20Learning%20Approach%20to%20Urban%20Street%20Functionality%20Prediction%20Based%20on%20Centrality%20Measures%20and%20Stacked%20Denoising%20Autoencoder&rft.jtitle=ISPRS%20international%20journal%20of%20geo-information&rft.au=Noori,%20Fatemeh&rft.date=2020-07-01&rft.volume=9&rft.issue=7&rft.spage=456&rft.pages=456-&rft.issn=2220-9964&rft.eissn=2220-9964&rft_id=info:doi/10.3390/ijgi9070456&rft_dat=%3Cproquest_doaj_%3E2426757625%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2426757625&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_61d454b8b0c84e0891e39f05602aa504&rfr_iscdi=true |