A Deep Learning Approach to Urban Street Functionality Prediction Based on Centrality Measures and Stacked Denoising Autoencoder

In urban planning and transportation management, the centrality characteristics of urban streets are vital measures to consider. Centrality can help in understanding the structural properties of dense traffic networks that affect both human life and activity in cities. Many cities classify urban str...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ISPRS international journal of geo-information 2020-07, Vol.9 (7), p.456
Hauptverfasser: Noori, Fatemeh, Kamangir, Hamid, A. King, Scott, Sheta, Alaa, Pashaei, Mohammad, SheikhMohammadZadeh, Abbas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page 456
container_title ISPRS international journal of geo-information
container_volume 9
creator Noori, Fatemeh
Kamangir, Hamid
A. King, Scott
Sheta, Alaa
Pashaei, Mohammad
SheikhMohammadZadeh, Abbas
description In urban planning and transportation management, the centrality characteristics of urban streets are vital measures to consider. Centrality can help in understanding the structural properties of dense traffic networks that affect both human life and activity in cities. Many cities classify urban streets to provide stakeholders with a group of street guidelines for possible new rehabilitation such as sidewalks, curbs, and setbacks. Transportation research always considers street networks as a connection between different urban areas. The street functionality classification defines the role of each element of the urban street network (USN). Some potential factors such as land use mix, accessible service, design goal, and administrators’ policies can affect the movement pattern of urban travelers. In this study, nine centrality measures are used to classify the urban roads in four cities evaluating the structural importance of street segments. In our work, a Stacked Denoising Autoencoder (SDAE) predicts a street’s functionality, then logistic regression is used as a classifier. Our proposed classifier can differentiate between four different classes adopted from the U.S. Department of Transportation (USDT): principal arterial road, minor arterial road, collector road, and local road. The SDAE-based model showed that regular grid configurations with repeated patterns are more influential in forming the functionality of road networks compared to those with less regularity in their spatial structure.
doi_str_mv 10.3390/ijgi9070456
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_crossref_primary_10_3390_ijgi9070456</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_61d454b8b0c84e0891e39f05602aa504</doaj_id><sourcerecordid>2426757625</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-71135e7a646b491206967aea20d06f3eb407bbe6494e45a7018f844afe0f734a3</originalsourceid><addsrcrecordid>eNpNUcFuEzEQXSGQqNqe-AFLHFFgbM_a62NIKVQKAgl6tmZ3Z4NDsIPtPfTGp7MkqOpc5s3M03vSm6Z5JeGt1g7ehf0uOLCArXnWXCilYOWcwedP8MvmupQ9LOWk7hAumj9rccN8FFumHEPcifXxmBMNP0RN4j73FMW3mpmruJ3jUEOKdAj1QXzNPIbTLN5T4VEsYMOx5vP5M1OZMxdBcVwEaPi5UG44plBOJnNNHIc0cr5qXkx0KHz9v18297cfvm8-rbZfPt5t1tvVoA3WlZVSt2zJoOnRSQXGGUtMCkYwk-YewfY9G3TI2JIF2U0dIk0Mk9VI-rK5O-uOifb-mMMvyg8-UfCnRco7T7mG4cDeyBFb7Lsehg4ZOidZuwlaA4qoBVy0Xp-1lqh-z1yq36c5L8kUr1AZ21qj2oX15swaciol8_ToKsH_-5h_8jH9FxwviIQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2426757625</pqid></control><display><type>article</type><title>A Deep Learning Approach to Urban Street Functionality Prediction Based on Centrality Measures and Stacked Denoising Autoencoder</title><source>DOAJ Directory of Open Access Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Noori, Fatemeh ; Kamangir, Hamid ; A. King, Scott ; Sheta, Alaa ; Pashaei, Mohammad ; SheikhMohammadZadeh, Abbas</creator><creatorcontrib>Noori, Fatemeh ; Kamangir, Hamid ; A. King, Scott ; Sheta, Alaa ; Pashaei, Mohammad ; SheikhMohammadZadeh, Abbas</creatorcontrib><description>In urban planning and transportation management, the centrality characteristics of urban streets are vital measures to consider. Centrality can help in understanding the structural properties of dense traffic networks that affect both human life and activity in cities. Many cities classify urban streets to provide stakeholders with a group of street guidelines for possible new rehabilitation such as sidewalks, curbs, and setbacks. Transportation research always considers street networks as a connection between different urban areas. The street functionality classification defines the role of each element of the urban street network (USN). Some potential factors such as land use mix, accessible service, design goal, and administrators’ policies can affect the movement pattern of urban travelers. In this study, nine centrality measures are used to classify the urban roads in four cities evaluating the structural importance of street segments. In our work, a Stacked Denoising Autoencoder (SDAE) predicts a street’s functionality, then logistic regression is used as a classifier. Our proposed classifier can differentiate between four different classes adopted from the U.S. Department of Transportation (USDT): principal arterial road, minor arterial road, collector road, and local road. The SDAE-based model showed that regular grid configurations with repeated patterns are more influential in forming the functionality of road networks compared to those with less regularity in their spatial structure.</description><identifier>ISSN: 2220-9964</identifier><identifier>EISSN: 2220-9964</identifier><identifier>DOI: 10.3390/ijgi9070456</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Back propagation ; centrality measures ; Cities ; Classification ; Classifiers ; Deep learning ; Design ; Federal agencies ; Land use ; Local movements ; Machine learning ; Neural networks ; Noise reduction ; Rehabilitation ; Roads ; Roads &amp; highways ; Semantics ; stacked denoising autoencoder ; street functionality classification ; Streets ; Support vector machines ; Traffic flow ; Transportation management ; Transportation networks ; Transportation planning ; Urban areas ; Urban planning ; urban transportation network ; Walkways</subject><ispartof>ISPRS international journal of geo-information, 2020-07, Vol.9 (7), p.456</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-71135e7a646b491206967aea20d06f3eb407bbe6494e45a7018f844afe0f734a3</citedby><cites>FETCH-LOGICAL-c364t-71135e7a646b491206967aea20d06f3eb407bbe6494e45a7018f844afe0f734a3</cites><orcidid>0000-0002-1427-6265 ; 0000-0002-3727-6276 ; 0000-0002-4022-0388</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2102,27924,27925</link.rule.ids></links><search><creatorcontrib>Noori, Fatemeh</creatorcontrib><creatorcontrib>Kamangir, Hamid</creatorcontrib><creatorcontrib>A. King, Scott</creatorcontrib><creatorcontrib>Sheta, Alaa</creatorcontrib><creatorcontrib>Pashaei, Mohammad</creatorcontrib><creatorcontrib>SheikhMohammadZadeh, Abbas</creatorcontrib><title>A Deep Learning Approach to Urban Street Functionality Prediction Based on Centrality Measures and Stacked Denoising Autoencoder</title><title>ISPRS international journal of geo-information</title><description>In urban planning and transportation management, the centrality characteristics of urban streets are vital measures to consider. Centrality can help in understanding the structural properties of dense traffic networks that affect both human life and activity in cities. Many cities classify urban streets to provide stakeholders with a group of street guidelines for possible new rehabilitation such as sidewalks, curbs, and setbacks. Transportation research always considers street networks as a connection between different urban areas. The street functionality classification defines the role of each element of the urban street network (USN). Some potential factors such as land use mix, accessible service, design goal, and administrators’ policies can affect the movement pattern of urban travelers. In this study, nine centrality measures are used to classify the urban roads in four cities evaluating the structural importance of street segments. In our work, a Stacked Denoising Autoencoder (SDAE) predicts a street’s functionality, then logistic regression is used as a classifier. Our proposed classifier can differentiate between four different classes adopted from the U.S. Department of Transportation (USDT): principal arterial road, minor arterial road, collector road, and local road. The SDAE-based model showed that regular grid configurations with repeated patterns are more influential in forming the functionality of road networks compared to those with less regularity in their spatial structure.</description><subject>Back propagation</subject><subject>centrality measures</subject><subject>Cities</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Deep learning</subject><subject>Design</subject><subject>Federal agencies</subject><subject>Land use</subject><subject>Local movements</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Noise reduction</subject><subject>Rehabilitation</subject><subject>Roads</subject><subject>Roads &amp; highways</subject><subject>Semantics</subject><subject>stacked denoising autoencoder</subject><subject>street functionality classification</subject><subject>Streets</subject><subject>Support vector machines</subject><subject>Traffic flow</subject><subject>Transportation management</subject><subject>Transportation networks</subject><subject>Transportation planning</subject><subject>Urban areas</subject><subject>Urban planning</subject><subject>urban transportation network</subject><subject>Walkways</subject><issn>2220-9964</issn><issn>2220-9964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFuEzEQXSGQqNqe-AFLHFFgbM_a62NIKVQKAgl6tmZ3Z4NDsIPtPfTGp7MkqOpc5s3M03vSm6Z5JeGt1g7ehf0uOLCArXnWXCilYOWcwedP8MvmupQ9LOWk7hAumj9rccN8FFumHEPcifXxmBMNP0RN4j73FMW3mpmruJ3jUEOKdAj1QXzNPIbTLN5T4VEsYMOx5vP5M1OZMxdBcVwEaPi5UG44plBOJnNNHIc0cr5qXkx0KHz9v18297cfvm8-rbZfPt5t1tvVoA3WlZVSt2zJoOnRSQXGGUtMCkYwk-YewfY9G3TI2JIF2U0dIk0Mk9VI-rK5O-uOifb-mMMvyg8-UfCnRco7T7mG4cDeyBFb7Lsehg4ZOidZuwlaA4qoBVy0Xp-1lqh-z1yq36c5L8kUr1AZ21qj2oX15swaciol8_ToKsH_-5h_8jH9FxwviIQ</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Noori, Fatemeh</creator><creator>Kamangir, Hamid</creator><creator>A. King, Scott</creator><creator>Sheta, Alaa</creator><creator>Pashaei, Mohammad</creator><creator>SheikhMohammadZadeh, Abbas</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1427-6265</orcidid><orcidid>https://orcid.org/0000-0002-3727-6276</orcidid><orcidid>https://orcid.org/0000-0002-4022-0388</orcidid></search><sort><creationdate>20200701</creationdate><title>A Deep Learning Approach to Urban Street Functionality Prediction Based on Centrality Measures and Stacked Denoising Autoencoder</title><author>Noori, Fatemeh ; Kamangir, Hamid ; A. King, Scott ; Sheta, Alaa ; Pashaei, Mohammad ; SheikhMohammadZadeh, Abbas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-71135e7a646b491206967aea20d06f3eb407bbe6494e45a7018f844afe0f734a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Back propagation</topic><topic>centrality measures</topic><topic>Cities</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Deep learning</topic><topic>Design</topic><topic>Federal agencies</topic><topic>Land use</topic><topic>Local movements</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Noise reduction</topic><topic>Rehabilitation</topic><topic>Roads</topic><topic>Roads &amp; highways</topic><topic>Semantics</topic><topic>stacked denoising autoencoder</topic><topic>street functionality classification</topic><topic>Streets</topic><topic>Support vector machines</topic><topic>Traffic flow</topic><topic>Transportation management</topic><topic>Transportation networks</topic><topic>Transportation planning</topic><topic>Urban areas</topic><topic>Urban planning</topic><topic>urban transportation network</topic><topic>Walkways</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Noori, Fatemeh</creatorcontrib><creatorcontrib>Kamangir, Hamid</creatorcontrib><creatorcontrib>A. King, Scott</creatorcontrib><creatorcontrib>Sheta, Alaa</creatorcontrib><creatorcontrib>Pashaei, Mohammad</creatorcontrib><creatorcontrib>SheikhMohammadZadeh, Abbas</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>ISPRS international journal of geo-information</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Noori, Fatemeh</au><au>Kamangir, Hamid</au><au>A. King, Scott</au><au>Sheta, Alaa</au><au>Pashaei, Mohammad</au><au>SheikhMohammadZadeh, Abbas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Deep Learning Approach to Urban Street Functionality Prediction Based on Centrality Measures and Stacked Denoising Autoencoder</atitle><jtitle>ISPRS international journal of geo-information</jtitle><date>2020-07-01</date><risdate>2020</risdate><volume>9</volume><issue>7</issue><spage>456</spage><pages>456-</pages><issn>2220-9964</issn><eissn>2220-9964</eissn><abstract>In urban planning and transportation management, the centrality characteristics of urban streets are vital measures to consider. Centrality can help in understanding the structural properties of dense traffic networks that affect both human life and activity in cities. Many cities classify urban streets to provide stakeholders with a group of street guidelines for possible new rehabilitation such as sidewalks, curbs, and setbacks. Transportation research always considers street networks as a connection between different urban areas. The street functionality classification defines the role of each element of the urban street network (USN). Some potential factors such as land use mix, accessible service, design goal, and administrators’ policies can affect the movement pattern of urban travelers. In this study, nine centrality measures are used to classify the urban roads in four cities evaluating the structural importance of street segments. In our work, a Stacked Denoising Autoencoder (SDAE) predicts a street’s functionality, then logistic regression is used as a classifier. Our proposed classifier can differentiate between four different classes adopted from the U.S. Department of Transportation (USDT): principal arterial road, minor arterial road, collector road, and local road. The SDAE-based model showed that regular grid configurations with repeated patterns are more influential in forming the functionality of road networks compared to those with less regularity in their spatial structure.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/ijgi9070456</doi><orcidid>https://orcid.org/0000-0002-1427-6265</orcidid><orcidid>https://orcid.org/0000-0002-3727-6276</orcidid><orcidid>https://orcid.org/0000-0002-4022-0388</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2220-9964
ispartof ISPRS international journal of geo-information, 2020-07, Vol.9 (7), p.456
issn 2220-9964
2220-9964
language eng
recordid cdi_crossref_primary_10_3390_ijgi9070456
source DOAJ Directory of Open Access Journals; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Back propagation
centrality measures
Cities
Classification
Classifiers
Deep learning
Design
Federal agencies
Land use
Local movements
Machine learning
Neural networks
Noise reduction
Rehabilitation
Roads
Roads & highways
Semantics
stacked denoising autoencoder
street functionality classification
Streets
Support vector machines
Traffic flow
Transportation management
Transportation networks
Transportation planning
Urban areas
Urban planning
urban transportation network
Walkways
title A Deep Learning Approach to Urban Street Functionality Prediction Based on Centrality Measures and Stacked Denoising Autoencoder
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T04%3A27%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Deep%20Learning%20Approach%20to%20Urban%20Street%20Functionality%20Prediction%20Based%20on%20Centrality%20Measures%20and%20Stacked%20Denoising%20Autoencoder&rft.jtitle=ISPRS%20international%20journal%20of%20geo-information&rft.au=Noori,%20Fatemeh&rft.date=2020-07-01&rft.volume=9&rft.issue=7&rft.spage=456&rft.pages=456-&rft.issn=2220-9964&rft.eissn=2220-9964&rft_id=info:doi/10.3390/ijgi9070456&rft_dat=%3Cproquest_doaj_%3E2426757625%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2426757625&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_61d454b8b0c84e0891e39f05602aa504&rfr_iscdi=true