The Unrealised Potential for Predicting Pregnancy Complications in Women with Gestational Diabetes: A Systematic Review and Critical Appraisal

Gestational diabetes (GDM) increases the risk of pregnancy complications. However, these risks are not the same for all affected women and may be mediated by inter-related factors including ethnicity, body mass index and gestational weight gain. This study was conducted to identify, compare, and cri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of environmental research and public health 2020-04, Vol.17 (9), p.3048, Article 3048
Hauptverfasser: Cooray, Shamil D., Wijeyaratne, Lihini A., Soldatos, Georgia, Allotey, John, Boyle, Jacqueline A., Teede, Helena J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Gestational diabetes (GDM) increases the risk of pregnancy complications. However, these risks are not the same for all affected women and may be mediated by inter-related factors including ethnicity, body mass index and gestational weight gain. This study was conducted to identify, compare, and critically appraise prognostic prediction models for pregnancy complications in women with gestational diabetes (GDM). A systematic review of prognostic prediction models for pregnancy complications in women with GDM was conducted. Critical appraisal was conducted using the prediction model risk of bias assessment tool (PROBAST). Five prediction modelling studies were identified, from which ten prognostic models primarily intended to predict pregnancy complications related to GDM were developed. While the composition of the pregnancy complications predicted varied, the delivery of a large-for-gestational age neonate was the subject of prediction in four studies, either alone or as a component of a composite outcome. Glycaemic measures and body mass index were selected as predictors in four studies. Model evaluation was limited to internal validation in four studies and not reported in the fifth. Performance was inadequately reported with no useful measures of calibration nor formal evaluation of clinical usefulness. Critical appraisal using PROBAST revealed that all studies were subject to a high risk of bias overall driven by methodologic limitations in statistical analysis. This review demonstrates the potential for prediction models to provide an individualised absolute risk of pregnancy complications for women affected by GDM. However, at present, a lack of external validation and high risk of bias limit clinical application. Future model development and validation should utilise the latest methodological advances in prediction modelling to achieve the evolution required to create a useful clinical tool. Such a tool may enhance clinical decision-making and support a risk-stratified approach to the management of GDM. Systematic review registration: PROSPERO CRD42019115223.
ISSN:1660-4601
1661-7827
1660-4601
DOI:10.3390/ijerph17093048