Enhancement in Thermal Energy and Solute Particles Using Hybrid Nanoparticles by Engaging Activation Energy and Chemical Reaction over a Parabolic Surface via Finite Element Approach

Several mechanisms in industrial use have significant applications in thermal transportation. The inclusion of hybrid nanoparticles in different mixtures has been studied extensively by researchers due to their wide applications. This report discusses the flow of Powell-Eyring fluid mixed with hybri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fractal and fractional 2021-09, Vol.5 (3), p.119, Article 119
Hauptverfasser: Chu, Yu-Ming, Nazir, Umar, Sohail, Muhammad, Selim, Mahmoud M., Lee, Jung-Rye
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 119
container_title Fractal and fractional
container_volume 5
creator Chu, Yu-Ming
Nazir, Umar
Sohail, Muhammad
Selim, Mahmoud M.
Lee, Jung-Rye
description Several mechanisms in industrial use have significant applications in thermal transportation. The inclusion of hybrid nanoparticles in different mixtures has been studied extensively by researchers due to their wide applications. This report discusses the flow of Powell-Eyring fluid mixed with hybrid nanoparticles over a melting parabolic stretched surface. Flow rheology expressions have been derived under boundary layer theory. Afterwards, similarity transformation has been applied to convert PDEs into associated ODEs. These transformed ODEs have been solved the using finite element procedure (FEP) in the symbolic computational package MAPLE 18.0. The applicability and effectiveness of FEM are presented by addressing grid independent analysis. The reliability of FEM is presented by computing the surface drag force and heat transportation coefficient. The used methodology is highly effective and it can be easily implemented in MAPLE 18.0 for other highly nonlinear problems. It is observed that the thermal profile varies directly with the magnetic parameter, and the opposite trend is recorded for the Prandtl number.
doi_str_mv 10.3390/fractalfract5030119
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_3390_fractalfract5030119</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_8e37b369d38d4f2999c206bb1edb276f</doaj_id><sourcerecordid>2576407955</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-e2cf55420b8af1f1c06f7671c288c3fc3a85be9a15e9a9fb70c01b4122faa5b23</originalsourceid><addsrcrecordid>eNqNUc1q3DAQNqWFhjRP0Iugx7KtfizLOi5m0wRCG5rkbEay5NXilbayvGFfrM9X7TosOeTQi2bQfD8zfEXxmeBvjEn83UbQCYZT4ZhhQuS74oJyXC4YIfj9q_5jcTWOG4wxFZJxLC6Kvyu_Bq_N1viEnEePaxO3MKCVN7E_IPAdegjDlAy6h5icHsyInkbne3RzUNF16Cf4sDuP1CEze-iPgKVObg_JBf9arVmbrdPZ4bfJ-x6HYW8igqM-qDA4jR6maEEbtHeArp132Xw1zBsud7sYQK8_FR8sDKO5eqmXxdP16rG5Wdz9-nHbLO8WmtV1WhiqLeclxaoGSyzRuLKiEkTTutbMagY1V0YC4fmRVgmsMVElodQCcEXZZXE763YBNu0uui3EQxvAtaePEPv25fa2NkwoVsmO1V1pqZRSU1wpRUynqKhs1voya-UT_kxmTO0mTNHn9VvKRVViITnPKDajdAzjGI09uxLcHvNu38g7s77OrGejgh21MznTMzMHLnLmpSC5wySj6_9HNy6dQmzC5BP7B-wTxNs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2576407955</pqid></control><display><type>article</type><title>Enhancement in Thermal Energy and Solute Particles Using Hybrid Nanoparticles by Engaging Activation Energy and Chemical Reaction over a Parabolic Surface via Finite Element Approach</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Chu, Yu-Ming ; Nazir, Umar ; Sohail, Muhammad ; Selim, Mahmoud M. ; Lee, Jung-Rye</creator><creatorcontrib>Chu, Yu-Ming ; Nazir, Umar ; Sohail, Muhammad ; Selim, Mahmoud M. ; Lee, Jung-Rye</creatorcontrib><description>Several mechanisms in industrial use have significant applications in thermal transportation. The inclusion of hybrid nanoparticles in different mixtures has been studied extensively by researchers due to their wide applications. This report discusses the flow of Powell-Eyring fluid mixed with hybrid nanoparticles over a melting parabolic stretched surface. Flow rheology expressions have been derived under boundary layer theory. Afterwards, similarity transformation has been applied to convert PDEs into associated ODEs. These transformed ODEs have been solved the using finite element procedure (FEP) in the symbolic computational package MAPLE 18.0. The applicability and effectiveness of FEM are presented by addressing grid independent analysis. The reliability of FEM is presented by computing the surface drag force and heat transportation coefficient. The used methodology is highly effective and it can be easily implemented in MAPLE 18.0 for other highly nonlinear problems. It is observed that the thermal profile varies directly with the magnetic parameter, and the opposite trend is recorded for the Prandtl number.</description><identifier>ISSN: 2504-3110</identifier><identifier>EISSN: 2504-3110</identifier><identifier>DOI: 10.3390/fractalfract5030119</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>Approximation ; Boundary conditions ; Boundary layers ; Chemical reactions ; Drag ; Finite element method ; finite element technique ; grid independent investigation ; Heat conductivity ; Industrial applications ; Magnetic fields ; Magnetic properties ; mathematical modeling ; Mathematics ; Mathematics, Interdisciplinary Applications ; Nanoparticles ; ordinary and partial differential equations ; Ordinary differential equations ; parametric investigation ; Physical Sciences ; Prandtl number ; Reliability analysis ; Reynolds number ; Rheological properties ; Rheology ; Science &amp; Technology ; Thermal energy ; thermal enhancement ; Transportation ; Velocity ; Viscosity</subject><ispartof>Fractal and fractional, 2021-09, Vol.5 (3), p.119, Article 119</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>465</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000700247100001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c388t-e2cf55420b8af1f1c06f7671c288c3fc3a85be9a15e9a9fb70c01b4122faa5b23</citedby><cites>FETCH-LOGICAL-c388t-e2cf55420b8af1f1c06f7671c288c3fc3a85be9a15e9a9fb70c01b4122faa5b23</cites><orcidid>0000-0002-1490-0339 ; 0000-0002-9727-4520</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,2096,2108,27903,27904</link.rule.ids></links><search><creatorcontrib>Chu, Yu-Ming</creatorcontrib><creatorcontrib>Nazir, Umar</creatorcontrib><creatorcontrib>Sohail, Muhammad</creatorcontrib><creatorcontrib>Selim, Mahmoud M.</creatorcontrib><creatorcontrib>Lee, Jung-Rye</creatorcontrib><title>Enhancement in Thermal Energy and Solute Particles Using Hybrid Nanoparticles by Engaging Activation Energy and Chemical Reaction over a Parabolic Surface via Finite Element Approach</title><title>Fractal and fractional</title><addtitle>FRACTAL FRACT</addtitle><description>Several mechanisms in industrial use have significant applications in thermal transportation. The inclusion of hybrid nanoparticles in different mixtures has been studied extensively by researchers due to their wide applications. This report discusses the flow of Powell-Eyring fluid mixed with hybrid nanoparticles over a melting parabolic stretched surface. Flow rheology expressions have been derived under boundary layer theory. Afterwards, similarity transformation has been applied to convert PDEs into associated ODEs. These transformed ODEs have been solved the using finite element procedure (FEP) in the symbolic computational package MAPLE 18.0. The applicability and effectiveness of FEM are presented by addressing grid independent analysis. The reliability of FEM is presented by computing the surface drag force and heat transportation coefficient. The used methodology is highly effective and it can be easily implemented in MAPLE 18.0 for other highly nonlinear problems. It is observed that the thermal profile varies directly with the magnetic parameter, and the opposite trend is recorded for the Prandtl number.</description><subject>Approximation</subject><subject>Boundary conditions</subject><subject>Boundary layers</subject><subject>Chemical reactions</subject><subject>Drag</subject><subject>Finite element method</subject><subject>finite element technique</subject><subject>grid independent investigation</subject><subject>Heat conductivity</subject><subject>Industrial applications</subject><subject>Magnetic fields</subject><subject>Magnetic properties</subject><subject>mathematical modeling</subject><subject>Mathematics</subject><subject>Mathematics, Interdisciplinary Applications</subject><subject>Nanoparticles</subject><subject>ordinary and partial differential equations</subject><subject>Ordinary differential equations</subject><subject>parametric investigation</subject><subject>Physical Sciences</subject><subject>Prandtl number</subject><subject>Reliability analysis</subject><subject>Reynolds number</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Science &amp; Technology</subject><subject>Thermal energy</subject><subject>thermal enhancement</subject><subject>Transportation</subject><subject>Velocity</subject><subject>Viscosity</subject><issn>2504-3110</issn><issn>2504-3110</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNUc1q3DAQNqWFhjRP0Iugx7KtfizLOi5m0wRCG5rkbEay5NXilbayvGFfrM9X7TosOeTQi2bQfD8zfEXxmeBvjEn83UbQCYZT4ZhhQuS74oJyXC4YIfj9q_5jcTWOG4wxFZJxLC6Kvyu_Bq_N1viEnEePaxO3MKCVN7E_IPAdegjDlAy6h5icHsyInkbne3RzUNF16Cf4sDuP1CEze-iPgKVObg_JBf9arVmbrdPZ4bfJ-x6HYW8igqM-qDA4jR6maEEbtHeArp132Xw1zBsud7sYQK8_FR8sDKO5eqmXxdP16rG5Wdz9-nHbLO8WmtV1WhiqLeclxaoGSyzRuLKiEkTTutbMagY1V0YC4fmRVgmsMVElodQCcEXZZXE763YBNu0uui3EQxvAtaePEPv25fa2NkwoVsmO1V1pqZRSU1wpRUynqKhs1voya-UT_kxmTO0mTNHn9VvKRVViITnPKDajdAzjGI09uxLcHvNu38g7s77OrGejgh21MznTMzMHLnLmpSC5wySj6_9HNy6dQmzC5BP7B-wTxNs</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Chu, Yu-Ming</creator><creator>Nazir, Umar</creator><creator>Sohail, Muhammad</creator><creator>Selim, Mahmoud M.</creator><creator>Lee, Jung-Rye</creator><general>Mdpi</general><general>MDPI AG</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1490-0339</orcidid><orcidid>https://orcid.org/0000-0002-9727-4520</orcidid></search><sort><creationdate>20210901</creationdate><title>Enhancement in Thermal Energy and Solute Particles Using Hybrid Nanoparticles by Engaging Activation Energy and Chemical Reaction over a Parabolic Surface via Finite Element Approach</title><author>Chu, Yu-Ming ; Nazir, Umar ; Sohail, Muhammad ; Selim, Mahmoud M. ; Lee, Jung-Rye</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-e2cf55420b8af1f1c06f7671c288c3fc3a85be9a15e9a9fb70c01b4122faa5b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Approximation</topic><topic>Boundary conditions</topic><topic>Boundary layers</topic><topic>Chemical reactions</topic><topic>Drag</topic><topic>Finite element method</topic><topic>finite element technique</topic><topic>grid independent investigation</topic><topic>Heat conductivity</topic><topic>Industrial applications</topic><topic>Magnetic fields</topic><topic>Magnetic properties</topic><topic>mathematical modeling</topic><topic>Mathematics</topic><topic>Mathematics, Interdisciplinary Applications</topic><topic>Nanoparticles</topic><topic>ordinary and partial differential equations</topic><topic>Ordinary differential equations</topic><topic>parametric investigation</topic><topic>Physical Sciences</topic><topic>Prandtl number</topic><topic>Reliability analysis</topic><topic>Reynolds number</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Science &amp; Technology</topic><topic>Thermal energy</topic><topic>thermal enhancement</topic><topic>Transportation</topic><topic>Velocity</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chu, Yu-Ming</creatorcontrib><creatorcontrib>Nazir, Umar</creatorcontrib><creatorcontrib>Sohail, Muhammad</creatorcontrib><creatorcontrib>Selim, Mahmoud M.</creatorcontrib><creatorcontrib>Lee, Jung-Rye</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Fractal and fractional</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chu, Yu-Ming</au><au>Nazir, Umar</au><au>Sohail, Muhammad</au><au>Selim, Mahmoud M.</au><au>Lee, Jung-Rye</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancement in Thermal Energy and Solute Particles Using Hybrid Nanoparticles by Engaging Activation Energy and Chemical Reaction over a Parabolic Surface via Finite Element Approach</atitle><jtitle>Fractal and fractional</jtitle><stitle>FRACTAL FRACT</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>5</volume><issue>3</issue><spage>119</spage><pages>119-</pages><artnum>119</artnum><issn>2504-3110</issn><eissn>2504-3110</eissn><abstract>Several mechanisms in industrial use have significant applications in thermal transportation. The inclusion of hybrid nanoparticles in different mixtures has been studied extensively by researchers due to their wide applications. This report discusses the flow of Powell-Eyring fluid mixed with hybrid nanoparticles over a melting parabolic stretched surface. Flow rheology expressions have been derived under boundary layer theory. Afterwards, similarity transformation has been applied to convert PDEs into associated ODEs. These transformed ODEs have been solved the using finite element procedure (FEP) in the symbolic computational package MAPLE 18.0. The applicability and effectiveness of FEM are presented by addressing grid independent analysis. The reliability of FEM is presented by computing the surface drag force and heat transportation coefficient. The used methodology is highly effective and it can be easily implemented in MAPLE 18.0 for other highly nonlinear problems. It is observed that the thermal profile varies directly with the magnetic parameter, and the opposite trend is recorded for the Prandtl number.</abstract><cop>BASEL</cop><pub>Mdpi</pub><doi>10.3390/fractalfract5030119</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-1490-0339</orcidid><orcidid>https://orcid.org/0000-0002-9727-4520</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2504-3110
ispartof Fractal and fractional, 2021-09, Vol.5 (3), p.119, Article 119
issn 2504-3110
2504-3110
language eng
recordid cdi_crossref_primary_10_3390_fractalfract5030119
source MDPI - Multidisciplinary Digital Publishing Institute; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Approximation
Boundary conditions
Boundary layers
Chemical reactions
Drag
Finite element method
finite element technique
grid independent investigation
Heat conductivity
Industrial applications
Magnetic fields
Magnetic properties
mathematical modeling
Mathematics
Mathematics, Interdisciplinary Applications
Nanoparticles
ordinary and partial differential equations
Ordinary differential equations
parametric investigation
Physical Sciences
Prandtl number
Reliability analysis
Reynolds number
Rheological properties
Rheology
Science & Technology
Thermal energy
thermal enhancement
Transportation
Velocity
Viscosity
title Enhancement in Thermal Energy and Solute Particles Using Hybrid Nanoparticles by Engaging Activation Energy and Chemical Reaction over a Parabolic Surface via Finite Element Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T14%3A18%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancement%20in%20Thermal%20Energy%20and%20Solute%20Particles%20Using%20Hybrid%20Nanoparticles%20by%20Engaging%20Activation%20Energy%20and%20Chemical%20Reaction%20over%20a%20Parabolic%20Surface%20via%20Finite%20Element%20Approach&rft.jtitle=Fractal%20and%20fractional&rft.au=Chu,%20Yu-Ming&rft.date=2021-09-01&rft.volume=5&rft.issue=3&rft.spage=119&rft.pages=119-&rft.artnum=119&rft.issn=2504-3110&rft.eissn=2504-3110&rft_id=info:doi/10.3390/fractalfract5030119&rft_dat=%3Cproquest_cross%3E2576407955%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2576407955&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_8e37b369d38d4f2999c206bb1edb276f&rfr_iscdi=true