Location, Separation and Approximation of Solutions for Quadratic Matrix Equations

In this work, we focus on analyzing the location and separation of the solutions of the simplest quadratic matrix equation. For this, we use the qualitative properties that we can deduce of the study of the convergence of iterative processes. This study allow us to determine domains of existence and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Foundations (Basel) 2022-05, Vol.2 (2), p.457-474
Hauptverfasser: Hernández-Verón, Miguel Á., Romero, Natalia
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 474
container_issue 2
container_start_page 457
container_title Foundations (Basel)
container_volume 2
creator Hernández-Verón, Miguel Á.
Romero, Natalia
description In this work, we focus on analyzing the location and separation of the solutions of the simplest quadratic matrix equation. For this, we use the qualitative properties that we can deduce of the study of the convergence of iterative processes. This study allow us to determine domains of existence and uniqueness of solutions, and therefore to locate and separate the solutions. Another goal is to approximate a solution of the quadratic matrix equation. For this, we consider iterative processes of fixed point type. So, analyzing the convergence of these iterative processes of fixed point type, we locate, separate and approximate solutions of quadratic matrix equations.
doi_str_mv 10.3390/foundations2020030
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_3390_foundations2020030</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_3390_foundations2020030</sourcerecordid><originalsourceid>FETCH-LOGICAL-c870-e9cc80ef2c0a0cefbc95d5cb4a101052bafcff677f98e1cd6814739aa5dd03c3</originalsourceid><addsrcrecordid>eNplkFFLwzAUhYMoOOb-gE_5AVZvkrVNHseYOqiI1vdye5NAZTY1WWH-e93qg-DT_bicc-_hMHYt4FYpA3c-jL3FfRf6JEECKDhjM1mUKjNKivM_fMkWKb0DgNRG6SKfsdcq0Ml6w2s3YDwxx97y1TDEcOg-pk3wvA678fSE-xD5y4j2qCb-hPvYHfjmc5wyXLELj7vkFr9zzur7zdv6MaueH7brVZWRLiFzhkiD85IAgZxvyeQ2p3aJAgTkskVP3hdl6Y12gmyhxbJUBjG3FhSpOZPTVYohpeh8M8SfsPGrEdAca2n-16K-ATsWW4M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Location, Separation and Approximation of Solutions for Quadratic Matrix Equations</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Directory of Open Access Journals</source><creator>Hernández-Verón, Miguel Á. ; Romero, Natalia</creator><creatorcontrib>Hernández-Verón, Miguel Á. ; Romero, Natalia</creatorcontrib><description>In this work, we focus on analyzing the location and separation of the solutions of the simplest quadratic matrix equation. For this, we use the qualitative properties that we can deduce of the study of the convergence of iterative processes. This study allow us to determine domains of existence and uniqueness of solutions, and therefore to locate and separate the solutions. Another goal is to approximate a solution of the quadratic matrix equation. For this, we consider iterative processes of fixed point type. So, analyzing the convergence of these iterative processes of fixed point type, we locate, separate and approximate solutions of quadratic matrix equations.</description><identifier>ISSN: 2673-9321</identifier><identifier>EISSN: 2673-9321</identifier><identifier>DOI: 10.3390/foundations2020030</identifier><language>eng</language><ispartof>Foundations (Basel), 2022-05, Vol.2 (2), p.457-474</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c870-e9cc80ef2c0a0cefbc95d5cb4a101052bafcff677f98e1cd6814739aa5dd03c3</cites><orcidid>0000-0001-5478-2958 ; 0000-0002-0653-560X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Hernández-Verón, Miguel Á.</creatorcontrib><creatorcontrib>Romero, Natalia</creatorcontrib><title>Location, Separation and Approximation of Solutions for Quadratic Matrix Equations</title><title>Foundations (Basel)</title><description>In this work, we focus on analyzing the location and separation of the solutions of the simplest quadratic matrix equation. For this, we use the qualitative properties that we can deduce of the study of the convergence of iterative processes. This study allow us to determine domains of existence and uniqueness of solutions, and therefore to locate and separate the solutions. Another goal is to approximate a solution of the quadratic matrix equation. For this, we consider iterative processes of fixed point type. So, analyzing the convergence of these iterative processes of fixed point type, we locate, separate and approximate solutions of quadratic matrix equations.</description><issn>2673-9321</issn><issn>2673-9321</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNplkFFLwzAUhYMoOOb-gE_5AVZvkrVNHseYOqiI1vdye5NAZTY1WWH-e93qg-DT_bicc-_hMHYt4FYpA3c-jL3FfRf6JEECKDhjM1mUKjNKivM_fMkWKb0DgNRG6SKfsdcq0Ml6w2s3YDwxx97y1TDEcOg-pk3wvA678fSE-xD5y4j2qCb-hPvYHfjmc5wyXLELj7vkFr9zzur7zdv6MaueH7brVZWRLiFzhkiD85IAgZxvyeQ2p3aJAgTkskVP3hdl6Y12gmyhxbJUBjG3FhSpOZPTVYohpeh8M8SfsPGrEdAca2n-16K-ATsWW4M</recordid><startdate>20220512</startdate><enddate>20220512</enddate><creator>Hernández-Verón, Miguel Á.</creator><creator>Romero, Natalia</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5478-2958</orcidid><orcidid>https://orcid.org/0000-0002-0653-560X</orcidid></search><sort><creationdate>20220512</creationdate><title>Location, Separation and Approximation of Solutions for Quadratic Matrix Equations</title><author>Hernández-Verón, Miguel Á. ; Romero, Natalia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c870-e9cc80ef2c0a0cefbc95d5cb4a101052bafcff677f98e1cd6814739aa5dd03c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hernández-Verón, Miguel Á.</creatorcontrib><creatorcontrib>Romero, Natalia</creatorcontrib><collection>CrossRef</collection><jtitle>Foundations (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hernández-Verón, Miguel Á.</au><au>Romero, Natalia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Location, Separation and Approximation of Solutions for Quadratic Matrix Equations</atitle><jtitle>Foundations (Basel)</jtitle><date>2022-05-12</date><risdate>2022</risdate><volume>2</volume><issue>2</issue><spage>457</spage><epage>474</epage><pages>457-474</pages><issn>2673-9321</issn><eissn>2673-9321</eissn><abstract>In this work, we focus on analyzing the location and separation of the solutions of the simplest quadratic matrix equation. For this, we use the qualitative properties that we can deduce of the study of the convergence of iterative processes. This study allow us to determine domains of existence and uniqueness of solutions, and therefore to locate and separate the solutions. Another goal is to approximate a solution of the quadratic matrix equation. For this, we consider iterative processes of fixed point type. So, analyzing the convergence of these iterative processes of fixed point type, we locate, separate and approximate solutions of quadratic matrix equations.</abstract><doi>10.3390/foundations2020030</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-5478-2958</orcidid><orcidid>https://orcid.org/0000-0002-0653-560X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2673-9321
ispartof Foundations (Basel), 2022-05, Vol.2 (2), p.457-474
issn 2673-9321
2673-9321
language eng
recordid cdi_crossref_primary_10_3390_foundations2020030
source MDPI - Multidisciplinary Digital Publishing Institute; Directory of Open Access Journals
title Location, Separation and Approximation of Solutions for Quadratic Matrix Equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T10%3A30%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Location,%20Separation%20and%20Approximation%20of%20Solutions%20for%20Quadratic%20Matrix%20Equations&rft.jtitle=Foundations%20(Basel)&rft.au=Hern%C3%A1ndez-Ver%C3%B3n,%20Miguel%20%C3%81.&rft.date=2022-05-12&rft.volume=2&rft.issue=2&rft.spage=457&rft.epage=474&rft.pages=457-474&rft.issn=2673-9321&rft.eissn=2673-9321&rft_id=info:doi/10.3390/foundations2020030&rft_dat=%3Ccrossref%3E10_3390_foundations2020030%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true